mirror of https://github.com/InternLM/InternLM
fix merged error
parent
950f2de833
commit
739a308c82
|
@ -293,10 +293,6 @@ def args_sanity_check():
|
||||||
model._add_item("moe_use_residual", False)
|
model._add_item("moe_use_residual", False)
|
||||||
if "moe_gate_k" not in model:
|
if "moe_gate_k" not in model:
|
||||||
model._add_item("moe_gate_k", 2)
|
model._add_item("moe_gate_k", 2)
|
||||||
assert not (
|
|
||||||
gpc.config.model.num_experts > 1 and gpc.config.parallel.zero1.fsdp
|
|
||||||
), "FSDP does not support num_experts > 1"
|
|
||||||
|
|
||||||
# process the parallel config
|
# process the parallel config
|
||||||
if "sequence_parallel" not in gpc.config.parallel:
|
if "sequence_parallel" not in gpc.config.parallel:
|
||||||
gpc.config.parallel._add_item("sequence_parallel", False)
|
gpc.config.parallel._add_item("sequence_parallel", False)
|
||||||
|
@ -345,11 +341,13 @@ def args_sanity_check():
|
||||||
gpc.config.loss._add_item("moe_loss_coeff", 1.0)
|
gpc.config.loss._add_item("moe_loss_coeff", 1.0)
|
||||||
|
|
||||||
# moe not support overlap and zero1.5 for now
|
# moe not support overlap and zero1.5 for now
|
||||||
if hasattr(gpc.config.model, "num_experts"):
|
if gpc.config.model.get("num_experts", 1) > 1:
|
||||||
|
assert not gpc.config.parallel.zero1.fsdp, "FSDP does not support num_experts > 1"
|
||||||
assert (
|
assert (
|
||||||
not optim_ckpt.overlap_sync_grad & optim_ckpt.overlap_sync_param
|
not optim_ckpt.overlap_sync_grad & optim_ckpt.overlap_sync_param
|
||||||
), "not support overlap and moe at the same time"
|
), "not support overlap and moe at the same time"
|
||||||
assert gpc.config.parallel.zero1.size == -1, "moe only support zero1, set zero1=dict(size=-1,...) can fix this"
|
assert gpc.config.parallel.zero1.size == -1, "moe only support zero1, set zero1=dict(size=-1,...) can fix this"
|
||||||
|
assert not gpc.config.parallel.sequence_parallel, "moe not support sequence parallel for now"
|
||||||
|
|
||||||
|
|
||||||
def launch(
|
def launch(
|
||||||
|
@ -413,7 +411,7 @@ def launch(
|
||||||
f"data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, "
|
f"data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, "
|
||||||
f"tensor parallel size: {gpc.tensor_parallel_size}",
|
f"tensor parallel size: {gpc.tensor_parallel_size}",
|
||||||
)
|
)
|
||||||
if hasattr(gpc.config.model, "num_experts") and gpc.config.model.num_experts > 1:
|
if gpc.config.model.get("num_experts", 1) > 1:
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Creating MoE with num_experts: {gpc.config.model.num_experts} | "
|
f"Creating MoE with num_experts: {gpc.config.model.num_experts} | "
|
||||||
f"expert parallel size: {gpc.expert_parallel_size} | "
|
f"expert parallel size: {gpc.expert_parallel_size} | "
|
||||||
|
|
|
@ -560,7 +560,6 @@ class HybridZeroOptimizer(BaseOptimizer):
|
||||||
last_stage=last_stage,
|
last_stage=last_stage,
|
||||||
previous_param_norms=previous_param_norms,
|
previous_param_norms=previous_param_norms,
|
||||||
zero_mode=self._broadcast_parallel_mode[group_id],
|
zero_mode=self._broadcast_parallel_mode[group_id],
|
||||||
is_moe_group=self._is_moe_group(self.optim.param_groups[group_id]),
|
|
||||||
)
|
)
|
||||||
return total_param_norms
|
return total_param_norms
|
||||||
|
|
||||||
|
@ -630,16 +629,6 @@ class HybridZeroOptimizer(BaseOptimizer):
|
||||||
param_norms=param_norms, loss_scale=self.loss_scale.item()
|
param_norms=param_norms, loss_scale=self.loss_scale.item()
|
||||||
)
|
)
|
||||||
|
|
||||||
# Need to allreduce(avg) the norms across different ranks because moe params will not be synced
|
|
||||||
# during allreduce
|
|
||||||
if self._is_moe_group(self.optim.param_groups[group_id]):
|
|
||||||
# model and zero have been reduced!!!
|
|
||||||
pg = gpc.get_group(ParallelMode.EXPERT)
|
|
||||||
scaled_norm = total_norms[group_name] * 1.0 / float(gpc.get_world_size(ParallelMode.EXPERT))
|
|
||||||
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_current_device(), dtype=torch.float)
|
|
||||||
dist.all_reduce(scaled_norm_tensor, group=pg)
|
|
||||||
total_norms[group_name] = scaled_norm_tensor.item()
|
|
||||||
|
|
||||||
timer("sync_grad").start()
|
timer("sync_grad").start()
|
||||||
self._sync_grad()
|
self._sync_grad()
|
||||||
timer("sync_grad").stop()
|
timer("sync_grad").stop()
|
||||||
|
@ -719,19 +708,6 @@ class HybridZeroOptimizer(BaseOptimizer):
|
||||||
param_shape == flat_fp32_avg_grads.shape
|
param_shape == flat_fp32_avg_grads.shape
|
||||||
), f"fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}"
|
), f"fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}"
|
||||||
|
|
||||||
# Parameters shared within a TP group, such as norm and moe gate, have precision inconsistency in gradients.
|
|
||||||
# Therefore, it is recommended to synchronize gradients within the TP group to eliminate accumulated errors.
|
|
||||||
# is_tp_sync_groups = (
|
|
||||||
# self._is_norm_group(self.optim.param_groups[group_id]),
|
|
||||||
# self._is_gate_group(self.optim.param_groups[group_id]),
|
|
||||||
# )
|
|
||||||
# if any(is_tp_sync_groups):
|
|
||||||
# dist.all_reduce(
|
|
||||||
# flat_fp32_avg_grads,
|
|
||||||
# op=dist.ReduceOp.AVG,
|
|
||||||
# group=gpc.get_group(ParallelMode.TENSOR),
|
|
||||||
# )
|
|
||||||
|
|
||||||
single_grad_partition_groups.append(flat_fp32_avg_grads)
|
single_grad_partition_groups.append(flat_fp32_avg_grads)
|
||||||
device = self._fp32_flat_param_groups_of_current_rank[group_id].device
|
device = self._fp32_flat_param_groups_of_current_rank[group_id].device
|
||||||
self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device)
|
self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device)
|
||||||
|
@ -774,9 +750,6 @@ class HybridZeroOptimizer(BaseOptimizer):
|
||||||
with torch.cuda.stream(self._comm_bcast_stream):
|
with torch.cuda.stream(self._comm_bcast_stream):
|
||||||
self.broadcast_params()
|
self.broadcast_params()
|
||||||
|
|
||||||
if not self._overlap_sync_param:
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
|
|
||||||
timer("step").stop()
|
timer("step").stop()
|
||||||
|
|
||||||
# update gradients may not be needed here, because the sync_params function is used in initialization,
|
# update gradients may not be needed here, because the sync_params function is used in initialization,
|
||||||
|
|
|
@ -252,8 +252,23 @@ def reduce_grads(gradients, parameters, fine_grained=False):
|
||||||
return parallel_grads
|
return parallel_grads
|
||||||
|
|
||||||
|
|
||||||
|
def reduce_moe_norm(total_norm):
|
||||||
|
pg = gpc.get_group(ParallelMode.EXPERT)
|
||||||
|
scaled_norm = total_norm * 1.0 / float(gpc.get_world_size(ParallelMode.DATA))
|
||||||
|
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_current_device(), dtype=torch.float)
|
||||||
|
dist.all_reduce(scaled_norm_tensor, group=pg)
|
||||||
|
total_norm = scaled_norm_tensor.item()
|
||||||
|
|
||||||
|
return total_norm
|
||||||
|
|
||||||
|
|
||||||
def compute_norm(
|
def compute_norm(
|
||||||
gradients, parameters, last_stage=False, previous_norm=None, norm_type=2, zero_mode=ParallelMode.ZERO1
|
gradients,
|
||||||
|
parameters,
|
||||||
|
last_stage=False,
|
||||||
|
previous_norm=None,
|
||||||
|
norm_type=2,
|
||||||
|
zero_mode=ParallelMode.ZERO1,
|
||||||
):
|
):
|
||||||
"""Get the norm
|
"""Get the norm
|
||||||
Arguments:
|
Arguments:
|
||||||
|
@ -326,6 +341,11 @@ def compute_norm(
|
||||||
if torch.is_tensor(total_norm):
|
if torch.is_tensor(total_norm):
|
||||||
total_norm = total_norm.item()
|
total_norm = total_norm.item()
|
||||||
|
|
||||||
|
# Need to allreduce(avg) the norms across different ranks because moe params will not be synced during allreduce
|
||||||
|
# model and zero have been reduced!!!
|
||||||
|
if zero_mode == ParallelMode.EXPERT_DATA:
|
||||||
|
total_norm = reduce_moe_norm(total_norm)
|
||||||
|
|
||||||
# Scale.
|
# Scale.
|
||||||
if total_norm == float("inf") or total_norm == -float("inf"):
|
if total_norm == float("inf") or total_norm == -float("inf"):
|
||||||
total_norm = -1
|
total_norm = -1
|
||||||
|
@ -343,7 +363,6 @@ def compute_param_norm(
|
||||||
previous_param_norms=None,
|
previous_param_norms=None,
|
||||||
norm_type=2,
|
norm_type=2,
|
||||||
zero_mode=ParallelMode.ZERO1,
|
zero_mode=ParallelMode.ZERO1,
|
||||||
is_moe_group=False,
|
|
||||||
):
|
):
|
||||||
"""Get the norm of params
|
"""Get the norm of params
|
||||||
Arguments:
|
Arguments:
|
||||||
|
@ -413,13 +432,8 @@ def compute_param_norm(
|
||||||
total_param_norms[param_name] += param_norm
|
total_param_norms[param_name] += param_norm
|
||||||
|
|
||||||
# moe
|
# moe
|
||||||
if is_moe_group:
|
if zero_mode == ParallelMode.EXPERT_DATA:
|
||||||
pg = gpc.get_group(ParallelMode.EXPERT)
|
total_param_norms = reduce_moe_norm(total_param_norms)
|
||||||
scaled_param_norm = torch.cuda.FloatTensor(list(total_param_norms.values()), device=get_current_device())
|
|
||||||
scaled_param_norm = scaled_param_norm / float(gpc.get_world_size(ParallelMode.EXPERT))
|
|
||||||
dist.all_reduce(scaled_param_norm, group=pg)
|
|
||||||
for i, param_name in enumerate(total_param_norms.keys()):
|
|
||||||
total_param_norms[param_name] = scaled_param_norm[i].item()
|
|
||||||
|
|
||||||
# scale
|
# scale
|
||||||
for param_name, param_norm in total_param_norms.items():
|
for param_name, param_norm in total_param_norms.items():
|
||||||
|
|
|
@ -39,7 +39,7 @@ def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict])
|
||||||
# create new groups for fp32, norm, moe gate and moe expert
|
# create new groups for fp32, norm, moe gate and moe expert
|
||||||
new_groups = {}
|
new_groups = {}
|
||||||
new_groups["fp32"] = {"name": "fp32", "params": [], "dp_mode": ParallelMode.DATA}
|
new_groups["fp32"] = {"name": "fp32", "params": [], "dp_mode": ParallelMode.DATA}
|
||||||
if gpc.config.model.get("num_experts", 0) > 1:
|
if gpc.config.model.get("num_experts", 1) > 1:
|
||||||
for key in gpc.expert_parallel_group_names:
|
for key in gpc.expert_parallel_group_names:
|
||||||
new_groups[key] = {"name": key, "moe": True, "params": [], "dp_mode": ParallelMode.EXPERT_DATA}
|
new_groups[key] = {"name": key, "moe": True, "params": [], "dp_mode": ParallelMode.EXPERT_DATA}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue