mirror of https://github.com/InternLM/InternLM
feat(model): support llama model with checkpoint loading (#532)
* support hf llama * support hf llama * support hf llama * support hf llama * importerror * importerror * modeling * modelingpull/538/head
parent
81ffb3d824
commit
6c0ff4820f
|
@ -28,7 +28,7 @@ ckpt = dict(
|
||||||
# 'load_ckpt_info' setting guide:
|
# 'load_ckpt_info' setting guide:
|
||||||
# 1. the 'path' indicate ckpt path,
|
# 1. the 'path' indicate ckpt path,
|
||||||
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||||||
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, support: "internlm", "llama", "hf_llama".
|
||||||
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||||||
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
|
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
|
||||||
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
|
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
|
||||||
|
|
|
@ -5,6 +5,7 @@ from .embedding import Embedding1D, RotaryEmbedding
|
||||||
from .linear import FeedForward, RewardModelLinear, ScaleColumnParallelLinear
|
from .linear import FeedForward, RewardModelLinear, ScaleColumnParallelLinear
|
||||||
from .metrics import AccPerplex
|
from .metrics import AccPerplex
|
||||||
from .modeling_internlm import build_model_with_cfg
|
from .modeling_internlm import build_model_with_cfg
|
||||||
|
from .modeling_llama import build_model_with_cfg as build_model_with_llama_cfg
|
||||||
from .modeling_moe import build_model_with_moe_cfg
|
from .modeling_moe import build_model_with_moe_cfg
|
||||||
from .moe import MoE
|
from .moe import MoE
|
||||||
from .multi_head_attention import MHA
|
from .multi_head_attention import MHA
|
||||||
|
@ -22,4 +23,5 @@ __all__ = [
|
||||||
"gather_forward_split_backward",
|
"gather_forward_split_backward",
|
||||||
"build_model_with_cfg",
|
"build_model_with_cfg",
|
||||||
"build_model_with_moe_cfg",
|
"build_model_with_moe_cfg",
|
||||||
|
"build_model_with_llama_cfg",
|
||||||
]
|
]
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -50,12 +50,16 @@ class CheckpointSaveType(Enum):
|
||||||
|
|
||||||
class CheckpointLoadType(Enum):
|
class CheckpointLoadType(Enum):
|
||||||
INTERNLM = "internlm"
|
INTERNLM = "internlm"
|
||||||
|
HF_LLAMA = "hf_llama"
|
||||||
|
LLAMA = "llama"
|
||||||
|
|
||||||
|
|
||||||
# The load method implemented by internlm by default does not use string representation types,
|
# The load method implemented by internlm by default does not use string representation types,
|
||||||
# but uses enumeration types defined in advance.
|
# but uses enumeration types defined in advance.
|
||||||
LOAD_TYPE_DICT = {
|
LOAD_TYPE_DICT = {
|
||||||
"internlm": CheckpointLoadType.INTERNLM,
|
"internlm": CheckpointLoadType.INTERNLM,
|
||||||
|
"hf_llama": CheckpointLoadType.HF_LLAMA,
|
||||||
|
"llama": CheckpointLoadType.LLAMA,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -74,7 +78,7 @@ class CheckpointLoadMethod:
|
||||||
LOAD_TYPE_FUNC = {}
|
LOAD_TYPE_FUNC = {}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def convet_load_type(load_type: str) -> Union[CheckpointLoadType, str]:
|
def convert_load_type(load_type: str) -> Union[CheckpointLoadType, str]:
|
||||||
if load_type.lower() in LOAD_TYPE_DICT:
|
if load_type.lower() in LOAD_TYPE_DICT:
|
||||||
# The ckpt load method implemented by internlm by default.
|
# The ckpt load method implemented by internlm by default.
|
||||||
return LOAD_TYPE_DICT[load_type.lower()]
|
return LOAD_TYPE_DICT[load_type.lower()]
|
||||||
|
@ -90,7 +94,11 @@ class CheckpointLoadMethod:
|
||||||
|
|
||||||
CheckpointLoadMethod.LOAD_TYPE_FUNC.update({load_type: load_func})
|
CheckpointLoadMethod.LOAD_TYPE_FUNC.update({load_type: load_func})
|
||||||
|
|
||||||
if load_type == CheckpointLoadType.INTERNLM:
|
if load_type in (
|
||||||
|
CheckpointLoadType.INTERNLM,
|
||||||
|
CheckpointLoadType.HF_LLAMA,
|
||||||
|
CheckpointLoadType.LLAMA,
|
||||||
|
):
|
||||||
CheckpointLoadMethod.LOAD_FUNC_SIG = inspect.signature(load_func)
|
CheckpointLoadMethod.LOAD_FUNC_SIG = inspect.signature(load_func)
|
||||||
else:
|
else:
|
||||||
if inspect.signature(load_func) != CheckpointLoadMethod.LOAD_FUNC_SIG and gpc.is_rank_for_log():
|
if inspect.signature(load_func) != CheckpointLoadMethod.LOAD_FUNC_SIG and gpc.is_rank_for_log():
|
||||||
|
@ -188,13 +196,33 @@ def load_shard_state_dict(shard_model, shard_state, **kwargs):
|
||||||
return (missing_k, unexpected_keys)
|
return (missing_k, unexpected_keys)
|
||||||
|
|
||||||
|
|
||||||
def try_load_internlm_ckpt(ckpt_mm, load_info, train_state: TrainState):
|
def process_load_info(load_info):
|
||||||
load_content_str = ""
|
load_content_str = ""
|
||||||
load_ckpt_folder = load_info["path"]
|
load_ckpt_folder = load_info["path"]
|
||||||
load_content: CheckpointLoadMask = load_info["content"]
|
load_content: CheckpointLoadMask = load_info["content"]
|
||||||
if gpc.is_rank_for_log():
|
if gpc.is_rank_for_log():
|
||||||
logger.info(f"Try load_ckpt_folder: {load_ckpt_folder}")
|
logger.info(f"Try load_ckpt_folder: {load_ckpt_folder}")
|
||||||
|
|
||||||
|
return load_content_str, load_ckpt_folder, load_content
|
||||||
|
|
||||||
|
|
||||||
|
def try_load_LLAMA_ckpt(ckpt_mm, load_info, train_state: TrainState): # pylint: disable=W0613
|
||||||
|
load_content_str, load_ckpt_folder, load_content = process_load_info(load_info)
|
||||||
|
if load_content.need_load(CheckpointLoadContent.MODEL):
|
||||||
|
load_llama_pretrained_weights(folder=load_ckpt_folder, model=ckpt_mm.model)
|
||||||
|
load_content_str += f"{CheckpointLoadContent.MODEL}, "
|
||||||
|
|
||||||
|
|
||||||
|
def try_load_hf_LLAMA_ckpt(ckpt_mm, load_info, train_state: TrainState): # pylint: disable=W0613
|
||||||
|
load_content_str, load_ckpt_folder, load_content = process_load_info(load_info)
|
||||||
|
if load_content.need_load(CheckpointLoadContent.MODEL):
|
||||||
|
load_hf_llama_pretrained_weights(folder=load_ckpt_folder, model=ckpt_mm.model)
|
||||||
|
load_content_str += f"{CheckpointLoadContent.MODEL}, "
|
||||||
|
|
||||||
|
|
||||||
|
def try_load_internlm_ckpt(ckpt_mm, load_info, train_state: TrainState):
|
||||||
|
load_content_str, load_ckpt_folder, load_content = process_load_info(load_info)
|
||||||
|
|
||||||
if load_content.need_load(CheckpointLoadContent.MODEL):
|
if load_content.need_load(CheckpointLoadContent.MODEL):
|
||||||
load_model_checkpoint(folder=load_ckpt_folder, model=ckpt_mm.model)
|
load_model_checkpoint(folder=load_ckpt_folder, model=ckpt_mm.model)
|
||||||
load_content_str += f"{CheckpointLoadContent.MODEL}, "
|
load_content_str += f"{CheckpointLoadContent.MODEL}, "
|
||||||
|
@ -314,6 +342,170 @@ def save_model_checkpoint(folder, model):
|
||||||
torch.distributed.barrier()
|
torch.distributed.barrier()
|
||||||
|
|
||||||
|
|
||||||
|
def load_llama_pretrained_weights(folder, model):
|
||||||
|
model = model.model
|
||||||
|
assert folder is not None, "Please specify the folder of the pretrained model"
|
||||||
|
if gpc.is_rank_for_log():
|
||||||
|
logger.info(f"Loading pretrained model from {folder}")
|
||||||
|
|
||||||
|
fns = get_fns(folder)
|
||||||
|
model_fns = [os.path.join(folder, fn) for fn in fns if fn.endswith(".pth") or fn.endswith(".pt")]
|
||||||
|
model_fns.sort()
|
||||||
|
|
||||||
|
old_tp = len(model_fns)
|
||||||
|
cur_tp = gpc.get_world_size(ParallelMode.TENSOR)
|
||||||
|
# If the two tp are inconsistent, you need to consider the merge before splitting
|
||||||
|
if old_tp != cur_tp:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Your current tp is `{cur_tp}`, but the tp in folder:`{folder}` is `{old_tp}`, use `` to convert first"
|
||||||
|
)
|
||||||
|
|
||||||
|
states = llm_load(model_fns[gpc.get_local_rank(ParallelMode.TENSOR)], map_location="cpu")
|
||||||
|
|
||||||
|
current_states = {}
|
||||||
|
for idx, i in enumerate(range(model.first_layer, model.last_layer)):
|
||||||
|
if gpc.config.model_type == "LLAMA":
|
||||||
|
# LLAMA's w2 and w3 are in reverse order
|
||||||
|
w2 = states.pop(f"layers.{i}.feed_forward.w2.weight")
|
||||||
|
w3 = states.pop(f"layers.{i}.feed_forward.w3.weight")
|
||||||
|
states[f"layers.{i}.feed_forward.w2.weight"] = w3
|
||||||
|
states[f"layers.{i}.feed_forward.w3.weight"] = w2
|
||||||
|
if "rope.freqs" in states:
|
||||||
|
states[f"layers.{i}.attention.rotary_emb.inv_freq"] = states["rope.freqs"]
|
||||||
|
for name in list(states.keys()):
|
||||||
|
if f".{i}." in name:
|
||||||
|
current_states[name.replace(f".{i}.", f".{idx}.")] = states.pop(name)
|
||||||
|
|
||||||
|
model_state_keys = set(list(model.state_dict().keys()))
|
||||||
|
|
||||||
|
if "tok_embeddings.weight" in model_state_keys:
|
||||||
|
current_states["tok_embeddings.weight"] = states["tok_embeddings.weight"]
|
||||||
|
assert model.first_layer == 0, f"Expect model.NaiveAMPModel to be 0, but got {model.first_layer}"
|
||||||
|
if "output.weight" in model_state_keys:
|
||||||
|
current_states["norm.weight"] = states["norm.weight"]
|
||||||
|
current_states["output.weight"] = states["output.weight"]
|
||||||
|
missing_keys, unexpected_keys = model.load_state_dict(current_states, strict=False)
|
||||||
|
|
||||||
|
if gpc.get_local_rank(ParallelMode.DATA) == 0:
|
||||||
|
pp_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||||
|
logger.info(
|
||||||
|
f"Missing keys:{missing_keys}, unexpected keys:{unexpected_keys} in "
|
||||||
|
f"tp:{gpc.get_local_rank(ParallelMode.TENSOR)}, pp:{pp_rank}"
|
||||||
|
)
|
||||||
|
|
||||||
|
del states
|
||||||
|
del current_states
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
|
def load_hf_llama_pretrained_weights(folder, model):
|
||||||
|
model = model.model
|
||||||
|
assert folder is not None, "Please specify the folder of the pretrained model"
|
||||||
|
if gpc.is_rank_for_log():
|
||||||
|
logger.info(f"Loading pretrained model from {folder}")
|
||||||
|
|
||||||
|
fns = get_fns(folder)
|
||||||
|
model_fns = [os.path.join(folder, fn) for fn in fns if fn.endswith(".bin") and fn.startswith("pytorch_model")]
|
||||||
|
model_fns.sort()
|
||||||
|
|
||||||
|
states = {}
|
||||||
|
|
||||||
|
for model_fn in model_fns:
|
||||||
|
states.update(llm_load(model_fn, map_location="cpu"))
|
||||||
|
|
||||||
|
deep_split = getattr(model, "deep_split", False)
|
||||||
|
if deep_split:
|
||||||
|
print("using deep split when loading pretrained weights!")
|
||||||
|
|
||||||
|
current_states = {}
|
||||||
|
for idx, i in enumerate(range(model.first_layer, model.last_layer)):
|
||||||
|
if gpc.config.model_type == "LLAMA":
|
||||||
|
if deep_split:
|
||||||
|
layer_ids = i // 2
|
||||||
|
else:
|
||||||
|
layer_ids = i
|
||||||
|
|
||||||
|
if not deep_split or (i + 2) % 2 == 0:
|
||||||
|
states[f"layers.{i}.attention.wq.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.self_attn.q_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=0,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.attention.wk.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.self_attn.k_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=0,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.attention.wv.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.self_attn.v_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=0,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.attention.wo.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.self_attn.o_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=1,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.attention_norm.weight"] = states.pop(
|
||||||
|
f"model.layers.{layer_ids}.input_layernorm.weight"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not deep_split or (i + 2) % 2 == 1:
|
||||||
|
states[f"layers.{i}.feed_forward.w1.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.mlp.gate_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=0,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.feed_forward.w2.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.mlp.up_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=0,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
states[f"layers.{i}.feed_forward.w3.weight"] = torch.chunk(
|
||||||
|
states.pop(f"model.layers.{layer_ids}.mlp.down_proj.weight"),
|
||||||
|
gpc.get_world_size(ParallelMode.TENSOR),
|
||||||
|
dim=1,
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
|
||||||
|
states[f"layers.{i}.ffn_norm.weight"] = states.pop(
|
||||||
|
f"model.layers.{layer_ids}.post_attention_layernorm.weight"
|
||||||
|
)
|
||||||
|
|
||||||
|
if f"model.layers.{layer_ids}.self_attn.rotary_emb.inv_freq" in states:
|
||||||
|
states.pop(f"model.layers.{layer_ids}.self_attn.rotary_emb.inv_freq")
|
||||||
|
for name in list(states.keys()):
|
||||||
|
if name.startswith(f"layers.{i}"):
|
||||||
|
current_states[name.replace(f".{i}.", f".{idx}.")] = states.pop(name)
|
||||||
|
|
||||||
|
model_state_keys = set(list(model.state_dict().keys()))
|
||||||
|
|
||||||
|
if "tok_embeddings.weight" in model_state_keys or "tok_embeddings.word_embeddings.weight" in model_state_keys:
|
||||||
|
if gpc.config.model.get("embed_split_hidden", True):
|
||||||
|
current_states["tok_embeddings.weight"] = torch.chunk(
|
||||||
|
states["model.embed_tokens.weight"], gpc.get_world_size(ParallelMode.TENSOR), dim=1
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
else:
|
||||||
|
current_states["tok_embeddings.word_embeddings.weight"] = torch.chunk(
|
||||||
|
states["model.embed_tokens.weight"], gpc.get_world_size(ParallelMode.TENSOR), dim=1
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
assert model.first_layer == 0, f"Expect model.first_layer to be 0, but got {model.first_layer}"
|
||||||
|
if "output.weight" in model_state_keys:
|
||||||
|
current_states["norm.weight"] = states["model.norm.weight"]
|
||||||
|
current_states["output.weight"] = torch.chunk(
|
||||||
|
states["lm_head.weight"], gpc.get_world_size(ParallelMode.TENSOR), dim=0
|
||||||
|
)[gpc.get_local_rank(ParallelMode.TENSOR)]
|
||||||
|
|
||||||
|
missing_keys, unexpected_keys = model.load_state_dict(current_states, strict=False)
|
||||||
|
|
||||||
|
if gpc.get_local_rank(ParallelMode.DATA) == 0:
|
||||||
|
pp_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||||
|
logger.info(
|
||||||
|
f"Missing keys:{missing_keys}, unexpected keys:{unexpected_keys} in "
|
||||||
|
f"tp:{gpc.get_local_rank(ParallelMode.TENSOR)}, pp:{pp_rank}"
|
||||||
|
)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
def load_model_checkpoint(folder, model):
|
def load_model_checkpoint(folder, model):
|
||||||
"""
|
"""
|
||||||
There should be weights with names similar to the following under the folder.
|
There should be weights with names similar to the following under the folder.
|
||||||
|
@ -682,7 +874,11 @@ class CheckpointManager:
|
||||||
self.model_config_file = model_config_file
|
self.model_config_file = model_config_file
|
||||||
|
|
||||||
# Register defalut internlm ckpt load type.
|
# Register defalut internlm ckpt load type.
|
||||||
self.defalut_load_type_func = {CheckpointLoadType.INTERNLM: try_load_internlm_ckpt}
|
self.defalut_load_type_func = {
|
||||||
|
CheckpointLoadType.INTERNLM: try_load_internlm_ckpt,
|
||||||
|
CheckpointLoadType.HF_LLAMA: try_load_hf_LLAMA_ckpt,
|
||||||
|
CheckpointLoadType.LLAMA: try_load_LLAMA_ckpt,
|
||||||
|
}
|
||||||
for ckpt_load_type in CheckpointLoadType:
|
for ckpt_load_type in CheckpointLoadType:
|
||||||
CheckpointLoadMethod.register_ckpt_load_type(ckpt_load_type, self.defalut_load_type_func[ckpt_load_type])
|
CheckpointLoadMethod.register_ckpt_load_type(ckpt_load_type, self.defalut_load_type_func[ckpt_load_type])
|
||||||
|
|
||||||
|
@ -718,7 +914,7 @@ class CheckpointManager:
|
||||||
|
|
||||||
# replace load_ckpt
|
# replace load_ckpt
|
||||||
self.load_ckpt_info["content"] = CheckpointLoadMask(self.load_ckpt_info["content"])
|
self.load_ckpt_info["content"] = CheckpointLoadMask(self.load_ckpt_info["content"])
|
||||||
self.load_ckpt_info["ckpt_type"] = CheckpointLoadMethod.convet_load_type(self.load_ckpt_info["ckpt_type"])
|
self.load_ckpt_info["ckpt_type"] = CheckpointLoadMethod.convert_load_type(self.load_ckpt_info["ckpt_type"])
|
||||||
|
|
||||||
torch.distributed.barrier()
|
torch.distributed.barrier()
|
||||||
# test storage setting is ok.
|
# test storage setting is ok.
|
||||||
|
|
|
@ -28,7 +28,6 @@ import torch.utils.checkpoint
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||||
from transformers.activations import ACT2FN
|
from transformers.activations import ACT2FN
|
||||||
from transformers.generation.streamers import BaseStreamer
|
|
||||||
from transformers.modeling_outputs import (
|
from transformers.modeling_outputs import (
|
||||||
BaseModelOutputWithPast,
|
BaseModelOutputWithPast,
|
||||||
CausalLMOutputWithPast,
|
CausalLMOutputWithPast,
|
||||||
|
@ -42,6 +41,11 @@ from transformers.utils import (
|
||||||
replace_return_docstrings,
|
replace_return_docstrings,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
from transformers.generation.streamers import BaseStreamer
|
||||||
|
except: # noqa # pylint: disable=bare-except
|
||||||
|
BaseStreamer = None
|
||||||
|
|
||||||
from .configuration_internlm import InternLMConfig
|
from .configuration_internlm import InternLMConfig
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
|
@ -113,6 +117,7 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
||||||
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
||||||
device (Any, optional): Running device. Defaults to None.
|
device (Any, optional): Running device. Defaults to None.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||||||
|
|
Loading…
Reference in New Issue