mirror of https://github.com/InternLM/InternLM
[Doc]: Update model descriptions in README (#601)
parent
896bac06a6
commit
69db8d4574
|
@ -74,8 +74,8 @@ The release of InternLM2 series contains two model sizes: 7B and 20B. 7B models
|
|||
|
||||
1. InternLM2-Base: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
|
||||
2. InternLM2: Optimized in multiple dimensions based on InternLM2-Base, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2 models are recommended for consideration in most applications.
|
||||
3. InternLM2-Chat-SFT: Based on the InternLM2-Base model, it undergoes supervised human alignment training.
|
||||
3. InternLM2-Chat: Optimized for conversational interaction on top of the InternLM2-Chat-SFT through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation, for better instruction following, chat experience and function calling, which is recommended for downstream applications.
|
||||
3. InternLM2-Chat-SFT: Intermediate version of InternLM2-Chat that only undergoes supervised fine-tuning (SFT), based on the InternLM2-Base model. We release them to benefit research on alignment.
|
||||
4. InternLM2-Chat: Further aligned on top of InternLM2-Chat-SFT through online RLHF. InternLM2-Chat exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
|
||||
|
||||
**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
||||
|
||||
|
|
|
@ -71,8 +71,8 @@ InternLM2 系列模型在本仓库正式发布,具有如下特性:
|
|||
|
||||
1. InternLM2-Base:高质量和具有很强可塑性的模型基座,是模型进行深度领域适配的高质量起点。
|
||||
2. InternLM2:在 Base 模型基础上,在多个能力方向进行了强化,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座。
|
||||
3. InternLM2-Chat-SFT: 基于InternLM2-Base模型基座,进行有监督的微调对齐训练。
|
||||
3. InternLM2-Chat:在 InternLM2-Chat-SFT 的基础上,通过基于人类反馈的强化学习算法进行了优化,以更好地适应对话交互,并在指令遵循、情感交流和功能调用方面表现出色,从而为下游应用提供更好的指令遵循、聊天体验和功能调用,这是我们推荐的在下游应用中的对话模型选择。
|
||||
3. InternLM2-Chat-SFT: 基于 InternLM2-Base 模型进行了有监督微调,是 InternLM2-Chat 模型的中间版本。我们将它们开源以助力社区在对齐方面的研究。
|
||||
4. InternLM2-Chat: 在 InternLM2-Chat-SFT 的基础上进行了 online RLHF 以进一步对齐. InternLM2-Chat 面向对话交互进行了优化,具有较好的指令遵循、共情聊天和调用工具等的能力,是我们推荐直接用于下游应用的模型。
|
||||
|
||||
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
||||
|
||||
|
|
|
@ -4,10 +4,10 @@
|
|||
|
||||
The second generation of the InternLM model, InternLM2, includes models at two scales: 7B and 20B. For the convenience of users and researchers, we have open-sourced four versions of each scale of the model, which are:
|
||||
|
||||
- internlm2-base-20b: A high-quality and highly adaptable model base, serving as an excellent starting point for deep domain adaptation.
|
||||
- internlm2-20b (**recommended**): Built upon the internlm2-base, this version has been enhanced in multiple capability directions. It shows outstanding performance in evaluations while maintaining robust general language abilities, making it our recommended choice for most applications.
|
||||
- internlm2-chat-20b-sft: Based on the Base model, it undergoes supervised human alignment training.
|
||||
- internlm2-chat-20b (**recommended**): Optimized for conversational interaction on top of the internlm2-sft through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation.
|
||||
- internlm2-base-20b: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
|
||||
- internlm2-20b (**recommended**): Optimized in multiple dimensions based on InternLM2-Base, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2 models are recommended for consideration in most applications.
|
||||
- internlm2-chat-20b-sft: Intermediate version of InternLM2-Chat that only undergoes supervised fine-tuning (SFT), based on the InternLM2-Base model. We release them to benefit research on alignment.
|
||||
- internlm2-chat-20b (**recommended**): Further aligned on top of InternLM2-Chat-SFT through online RLHF. InternLM2-Chat exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
|
||||
|
||||
The base model of InternLM2 has the following technical features:
|
||||
|
||||
|
@ -18,10 +18,10 @@ The base model of InternLM2 has the following technical features:
|
|||
|
||||
| Model | Transformers(HF) | ModelScope(HF) | OpenXLab(HF) | Release Date |
|
||||
|---------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|
||||
| **InternLM2 Base 20B** | [🤗internlm/internlm2-base-20b](https://huggingface.co/internlm/internlm2-base-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-base-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-base-20b) | 2024-01-17 |
|
||||
| **InternLM2 20B** | [🤗internlm/internlm2-20b](https://huggingface.co/internlm/internlm2-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-20b) | 2024-01-17 |
|
||||
| **InternLM2 Chat 20B SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
||||
| **InternLM2 Chat 20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
||||
| **InternLM2-Base-20B** | [🤗internlm/internlm2-base-20b](https://huggingface.co/internlm/internlm2-base-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-base-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-base-20b) | 2024-01-17 |
|
||||
| **InternLM2-20B** | [🤗internlm/internlm2-20b](https://huggingface.co/internlm/internlm2-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-20b) | 2024-01-17 |
|
||||
| **InternLM2-Chat-20B-SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
||||
| **InternLM2-Chat-20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
||||
|
||||
## Performance Evaluation
|
||||
|
||||
|
|
|
@ -4,10 +4,10 @@
|
|||
|
||||
The second generation of the InternLM model, InternLM2, includes models at two scales: 7B and 20B. For the convenience of users and researchers, we have open-sourced four versions of each scale of the model, which are:
|
||||
|
||||
- internlm2-base-7b: A high-quality and highly adaptable model base, serving as an excellent starting point for deep domain adaptation.
|
||||
- internlm2-7b (**recommended**): Built upon the internlm2-base, this version has been enhanced in multiple capability directions. It shows outstanding performance in evaluations while maintaining robust general language abilities, making it our recommended choice for most applications.
|
||||
- internlm2-chat-7b-sft: Based on the Base model, it undergoes supervised human alignment training.
|
||||
- internlm2-chat-7b (**recommended**): Optimized for conversational interaction on top of the internlm2-sft through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation.
|
||||
- internlm2-base-7b: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
|
||||
- internlm2-7b (**recommended**): Optimized in multiple dimensions based on InternLM2-Base, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2 models are recommended for consideration in most applications.
|
||||
- internlm2-chat-7b-sft: Intermediate version of InternLM2-Chat that only undergoes supervised fine-tuning (SFT), based on the InternLM2-Base model. We release them to benefit research on alignment.
|
||||
- internlm2-chat-7b (**recommended**): Further aligned on top of InternLM2-Chat-SFT through online RLHF. InternLM2-Chat exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
|
||||
|
||||
The base model of InternLM2 has the following technical features:
|
||||
|
||||
|
@ -18,10 +18,10 @@ The base model of InternLM2 has the following technical features:
|
|||
|
||||
| Model | Transformers(HF) | ModelScope(HF) | OpenXLab(HF) | Release Date |
|
||||
|---------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|
||||
| **InternLM2 Base 7B** | [🤗internlm/internlm2-base-7b](https://huggingface.co/internlm/internlm2-base-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-base-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-base-7b) | 2024-01-17 |
|
||||
| **InternLM2 7B** | [🤗internlm/internlm2-7b](https://huggingface.co/internlm/internlm2-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-7b) | 2024-01-17 |
|
||||
| **InternLM2 Chat 7B SFT** | [🤗internlm/internlm2-chat-7b-sft](https://huggingface.co/internlm/internlm2-chat-7b-sft) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-7b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-7b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-7b-sft) | 2024-01-17 |
|
||||
| **InternLM2 Chat 7B** | [🤗internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-7b) | 2024-01-17 |
|
||||
| **InternLM2-Base-7B** | [🤗internlm/internlm2-base-7b](https://huggingface.co/internlm/internlm2-base-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-base-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-base-7b) | 2024-01-17 |
|
||||
| **InternLM2-7B** | [🤗internlm/internlm2-7b](https://huggingface.co/internlm/internlm2-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-7b) | 2024-01-17 |
|
||||
| **InternLM2-Chat-7B-SFT** | [🤗internlm/internlm2-chat-7b-sft](https://huggingface.co/internlm/internlm2-chat-7b-sft) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-7b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-7b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-7b-sft) | 2024-01-17 |
|
||||
| **InternLM2-Chat-7B** | [🤗internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) | [<img src="../assets/modelscope_logo.png" width="20px" /> internlm2-chat-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-7b) | 2024-01-17 |
|
||||
|
||||
## Performance Evaluation
|
||||
|
||||
|
|
Loading…
Reference in New Issue