fix/fix_submodule_err (#61)

* fix/fix_submodule_err

---------

Co-authored-by: ChenQiaoling00 <qiaoling_chen@u.nus.edu>
pull/65/head
Sun Peng 2023-07-12 18:59:31 +08:00 committed by GitHub
parent c7287e2584
commit 6150e4daed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 9 additions and 7 deletions

View File

@ -8,7 +8,8 @@ The required packages and corresponding version are shown as follows:
- CUDA == 11.7
- Pytorch == 1.13.1+cu117
- Transformers >= 4.25.1
- Flash-Attention == 23.05
- Flash-Attention == v1.0.5
- Apex == 23.05
- GPU with Ampere or Hopper architecture (such as H100, A100)
- Linux OS

View File

@ -192,7 +192,7 @@ $ srun -p internllm -N 2 -n 16 --ntasks-per-node=8 --gpus-per-task=1 python trai
If you want to start distributed training on torch with 8 GPUs on a single node, use the following command:
```bash
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py --launcher "torch"
```
### Training Results

View File

@ -8,7 +8,8 @@
- CUDA == 11.7
- Pytorch == 1.13.1+cu117
- Transformers >= 4.25.1
- Flash-Attention == 23.05
- Flash-Attention == v1.0.5
- Apex == 23.05
- Ampere或者Hopper架构的GPU (例如H100, A100)
- Linux OS

View File

@ -175,7 +175,7 @@ $ srun -p internllm -N 2 -n 16 --ntasks-per-node=8 --gpus-per-task=1 python trai
若在 torch 上启动分布式运行环境,单节点 8 卡的运行命令如下所示:
```bash
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py --launcher "torch"
```
### 运行结果

2
third_party/apex vendored

@ -1 +1 @@
Subproject commit 8ffc901e50bbf740fdb6d5bccb17f66a6ec8604e
Subproject commit 0da3ffb92ee6fbe5336602f0e3989db1cd16f880

@ -1 +1 @@
Subproject commit d2f4324f4c56e017fbf22dc421943793a8ca6c3b
Subproject commit eff9fe6b8076df59d64d7a3f464696738a3c7c24