mirror of https://github.com/InternLM/InternLM
fix/fix_submodule_err (#61)
* fix/fix_submodule_err --------- Co-authored-by: ChenQiaoling00 <qiaoling_chen@u.nus.edu>pull/65/head
parent
c7287e2584
commit
6150e4daed
|
@ -8,7 +8,8 @@ The required packages and corresponding version are shown as follows:
|
|||
- CUDA == 11.7
|
||||
- Pytorch == 1.13.1+cu117
|
||||
- Transformers >= 4.25.1
|
||||
- Flash-Attention == 23.05
|
||||
- Flash-Attention == v1.0.5
|
||||
- Apex == 23.05
|
||||
- GPU with Ampere or Hopper architecture (such as H100, A100)
|
||||
- Linux OS
|
||||
|
||||
|
|
|
@ -192,7 +192,7 @@ $ srun -p internllm -N 2 -n 16 --ntasks-per-node=8 --gpus-per-task=1 python trai
|
|||
If you want to start distributed training on torch with 8 GPUs on a single node, use the following command:
|
||||
|
||||
```bash
|
||||
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py
|
||||
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py --launcher "torch"
|
||||
```
|
||||
|
||||
### Training Results
|
||||
|
@ -217,4 +217,4 @@ Taking the configuration of the demo training on a single machine with 8 GPUs on
|
|||
2023-07-07 12:29:09,307 INFO train.py:323 in record_current_batch_training_metrics -- tflops=188.8613541410694,step=3,loss=11.099515914916992,tgs (tokens/gpu/second)=4252.55,lr=1.0000000000000002e-06,loss_scale=65536.0,grad_norm=63.5478796484391,micro_num=4,num_consumed_tokens=524288,inf_nan_skip_batches=0,num_samples_in_batch=16,largest_length=2048,largest_batch=5,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.7
|
||||
2023-07-07 12:29:13,147 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.65918563194305,step=4,loss=10.149517059326172,tgs (tokens/gpu/second)=4270.52,lr=1.2000000000000002e-06,loss_scale=65536.0,grad_norm=51.582841631508145,micro_num=4,num_consumed_tokens=655360,inf_nan_skip_batches=0,num_samples_in_batch=19,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.68
|
||||
2023-07-07 12:29:16,994 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.3109313713174,step=5,loss=9.822169303894043,tgs (tokens/gpu/second)=4262.67,lr=1.4000000000000001e-06,loss_scale=65536.0,grad_norm=47.10386835560855,micro_num=4,num_consumed_tokens=786432,inf_nan_skip_batches=0,num_samples_in_batch=17,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.69
|
||||
```
|
||||
```
|
||||
|
|
|
@ -8,7 +8,8 @@
|
|||
- CUDA == 11.7
|
||||
- Pytorch == 1.13.1+cu117
|
||||
- Transformers >= 4.25.1
|
||||
- Flash-Attention == 23.05
|
||||
- Flash-Attention == v1.0.5
|
||||
- Apex == 23.05
|
||||
- Ampere或者Hopper架构的GPU (例如H100, A100)
|
||||
- Linux OS
|
||||
|
||||
|
|
|
@ -175,7 +175,7 @@ $ srun -p internllm -N 2 -n 16 --ntasks-per-node=8 --gpus-per-task=1 python trai
|
|||
|
||||
若在 torch 上启动分布式运行环境,单节点 8 卡的运行命令如下所示:
|
||||
```bash
|
||||
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py
|
||||
$ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py --launcher "torch"
|
||||
```
|
||||
|
||||
### 运行结果
|
||||
|
|
|
@ -1 +1 @@
|
|||
Subproject commit 8ffc901e50bbf740fdb6d5bccb17f66a6ec8604e
|
||||
Subproject commit 0da3ffb92ee6fbe5336602f0e3989db1cd16f880
|
|
@ -1 +1 @@
|
|||
Subproject commit d2f4324f4c56e017fbf22dc421943793a8ca6c3b
|
||||
Subproject commit eff9fe6b8076df59d64d7a3f464696738a3c7c24
|
Loading…
Reference in New Issue