reformat code

pull/375/head
Wenwen Qu 2023-08-08 15:07:04 +08:00
parent c357288a8b
commit 5b6cf7cab0
3 changed files with 134 additions and 141 deletions

View File

@ -49,5 +49,5 @@ repos:
args:
[
'--rcfile=.pylintrc',
'--disable=C0114,C0415,W0212,W0235,W0238,W0621,C0103,R1735,C2801,E0402,C0412,W0719,R1728,W1514,W0718,W0105,W0707,C0209,W0703,W1203'
]
'--disable=C0330, C0114,C0415,W0212,W0235,W0238,W0621,C0103,R1735,C2801,E0402,C0412,W0719,R1728,W1514,W0718,W0105,W0707,C0209,W0703,W1203'
]

View File

@ -10,21 +10,24 @@ https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
# DeepSpeed Team
from typing import Union, cast
import torch
import copy
from torch.nn import Module, ModuleList
from typing import TYPE_CHECKING, Any, Optional, Tuple, Union, cast
class Experts(torch.nn.Module):
"""
Local Experts.
"""
def __init__(self, experts: Union[Module, ModuleList], num_local_experts=1):
super(Experts, self).__init__()
super().__init__()
# TODO: We can not deepcopy FeedForward since it contains a process_group in submodules
# TODO: We can not deepcopy FeedForward since it contains a process_group in submodules
# self.experts = torch.nn.ModuleList([copy.deepcopy(expert) for i in range(num_local_experts)])
if type(experts) == ModuleList:
if isinstance(experts, ModuleList):
self.experts = cast(ModuleList, experts)
else:
self.experts = ModuleList([experts])
@ -33,7 +36,7 @@ class Experts(torch.nn.Module):
# TODO: revisit allreduce for moe.gate...
for expert in self.experts:
# TODO: Create param groups to handle expert + data case (e.g. param.group = moe_group)
for name, param in expert.named_parameters():
for _, param in expert.named_parameters():
param.all_reduce = False
def forward(self, inputs):
@ -41,7 +44,7 @@ class Experts(torch.nn.Module):
expert_outputs = []
for chunk, expert in zip(chunks, self.experts):
out = expert(chunk)
if type(out) is tuple:
if isinstance(out, tuple):
out = out[0] # Ignore the bias term for now
expert_outputs += [out]

View File

@ -1,14 +1,3 @@
import torch.distributed as dist
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.core.context import global_context as gpc
from internlm.core.context import ParallelMode
# global llm logger
logger = get_logger(__file__)
"""
The file has been adapted from the following files:
https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
@ -22,13 +11,19 @@ https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
# DeepSpeed Team
from typing import Callable, Dict, TYPE_CHECKING, Any, Optional, Tuple
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Module
import torch.nn.functional as F
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
# global llm logger
logger = get_logger(__file__)
if TYPE_CHECKING:
Base = Module[Tensor]
@ -57,9 +52,9 @@ def multiplicative_jitter(x, device: torch.device, epsilon=1e-2):
return x
uniform = uniform_map.get(device)
if uniform is None:
uniform = torch.distributions.uniform.Uniform(low=torch.tensor(1.0 - epsilon, device=device),
high=torch.tensor(1.0 + epsilon,
device=device)).rsample # type: ignore
uniform = torch.distributions.uniform.Uniform(
low=torch.tensor(1.0 - epsilon, device=device), high=torch.tensor(1.0 + epsilon, device=device)
).rsample # type: ignore
uniform_map[device] = uniform
return x * uniform(x.shape)
@ -73,23 +68,28 @@ def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
gumbel_map[device] = gumbel
return gumbel(shape)
# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.
# Based on https://github.com/pytorch/pytorch/pull/40762
class _AllToAll(torch.autograd.Function):
"""
All to all communication
"""
@staticmethod
def forward(
ctx: Any,
# TODO: replace with DS process group
group: torch.distributed.ProcessGroup,
input: Tensor) -> Tensor: # type: ignore
ctx: Any,
# TODO: replace with DS process group
group: torch.distributed.ProcessGroup,
inputs: Tensor,
) -> Tensor: # type: ignore
ctx.group = group
input = input.contiguous()
output = torch.empty_like(input)
dist.all_to_all_single(output, input, group=group)
inputs = inputs.contiguous()
output = torch.empty_like(inputs)
dist.all_to_all_single(output, inputs, group=group)
return output
@staticmethod
@ -107,26 +107,26 @@ USE_EINSUM = True
def einsum(rule, a, b):
if USE_EINSUM:
return torch.einsum(rule, a, b)
elif rule == 's,se->se':
## [1, s] * [s, e]
return a.reshape(a.shape[0], -1) * b
elif rule == 'se,sc->sec':
## [s,e,1] * [s,1,c]
return a.unsqueeze(2) * b.unsqueeze(1)
elif rule == 'se,se->s':
## [s,1,e] * [s,e,1]
return torch.bmm(a.unsqueeze(1), b.unsqueeze(2)).reshape(-1)
elif rule == 'sec,sm->ecm':
## [e*c, s] * [s, m]
elif rule == "s,se->se":
# [1, s] * [s, e]
return a.reshape(a.shape[0], -1) * b
elif rule == "se,sc->sec":
# [s,e,1] * [s,1,c]
return a.unsqueeze(2) * b.unsqueeze(1)
elif rule == "se,se->s":
# [s,1,e] * [s,e,1]
return torch.bmm(a.unsqueeze(1), b.unsqueeze(2)).reshape(-1)
elif rule == "sec,sm->ecm":
# [e*c, s] * [s, m]
s = a.shape[0]
e = a.shape[1]
c = a.shape[2]
m = b.shape[1]
return torch.matmul(a.reshape(s, -1).t(), b).reshape(e, c, m)
elif rule == 'sec,ecm->sm':
## [s, e*c] * [e*c, m]
return torch.matmul(a.reshape(a.shape[0], -1), b.reshape(-1, b.shape[-1]))
elif rule == 'ks,ksm->sm':
return torch.matmul(a.reshape(s, -1).t(), b).reshape(e, c, m)
elif rule == "sec,ecm->sm":
# [s, e*c] * [e*c, m]
return torch.matmul(a.reshape(a.shape[0], -1), b.reshape(-1, b.shape[-1]))
elif rule == "ks,ksm->sm":
k = b.shape[0]
s = b.shape[1]
m = b.shape[2]
@ -172,16 +172,17 @@ def _one_hot_to_float(x, num_classes):
return F.one_hot(x, num_classes=num_classes).float()
def top1gating(logits: Tensor,
capacity_factor: float,
min_capacity: int,
used_token: Tensor = None,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
def top1gating(
logits: Tensor,
capacity_factor: float,
min_capacity: int,
used_token: Tensor = None,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Implements Top1Gating on logits."""
if noisy_gate_policy == 'RSample':
if noisy_gate_policy == "RSample":
logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
# everything is in fp32 in this function
gates = F.softmax(logits, dim=1)
@ -190,7 +191,7 @@ def top1gating(logits: Tensor,
# Create a mask for 1st's expert per token
# noisy gating
indices1_s = torch.argmax(logits_w_noise if noisy_gate_policy == 'RSample' else gates, dim=1)
indices1_s = torch.argmax(logits_w_noise if noisy_gate_policy == "RSample" else gates, dim=1)
num_experts = int(gates.shape[1])
mask1 = F.one_hot(indices1_s, num_classes=num_experts)
@ -199,7 +200,7 @@ def top1gating(logits: Tensor,
mask1 = einsum("s,se->se", used_token, mask1)
# gating decisions
exp_counts = torch.sum(mask1, dim=0).detach().to('cpu')
exp_counts = torch.sum(mask1, dim=0).detach().to("cpu")
# if we don't want to drop any tokens
if not drop_tokens:
@ -216,42 +217,28 @@ def top1gating(logits: Tensor,
if use_rts:
uniform = exp_selection_uniform_map.get(logits.device)
if uniform is None:
uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=logits.device),
high=torch.tensor(1.0, device=logits.device)).rsample
uniform = torch.distributions.uniform.Uniform(
low=torch.tensor(0.0, device=logits.device), high=torch.tensor(1.0, device=logits.device)
).rsample
exp_selection_uniform_map[logits.device] = uniform
mask1_rand = mask1 * uniform(mask1.shape)
else:
mask1_rand = mask1
assert logits.shape[
0] >= min_capacity, "No. of tokens (batch-size) should be greater than min_capacity. Either set min_capacity to 0 or increase your batch size."
assert (
logits.shape[0] >= min_capacity
), """No. of tokens (batch-size) should be greater than min_capacity.
Either set min_capacity to 0 or increase your batch size."""
top_idx = _top_idx(mask1_rand, capacity) #@wenwen: token index
top_idx = _top_idx(mask1_rand, capacity) # @wenwen: token index
new_mask1 = mask1 * torch.zeros_like(mask1).scatter_(0, top_idx, 1)
mask1 = new_mask1
if use_tutel:
# Tutel doesn't support index values masked with zero
# so we need to replace masked indices with -1
indices_mask = mask1.sum(dim=1) * num_experts - 1
indices1_s = torch.min(indices1_s, indices_mask)
# Compute locations in capacity buffer
locations1 = torch.cumsum(mask1, dim=0) - 1
if use_tutel:
gates1_s = (gates * mask1).sum(dim=1)
locations1_s = torch.sum(locations1 * mask1, dim=1)
return l_aux, capacity, num_experts, [
indices1_s,
], [
locations1_s,
], [
gates1_s,
], exp_counts
locations1 = torch.cumsum(mask1, dim=0) - 1
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
@ -295,7 +282,7 @@ def top2gating(logits: Tensor, capacity_factor: float, min_capacity: int) -> Tup
locations2 += torch.sum(mask1, dim=0, keepdim=True)
# gating decisions
exp_counts = torch.sum(mask1, dim=0).detach().to('cpu')
exp_counts = torch.sum(mask1, dim=0).detach().to("cpu")
# Compute l_aux
me = torch.mean(gates, dim=0)
@ -352,21 +339,23 @@ class TopKGate(Module):
wg: torch.nn.Linear
def __init__(self,
model_dim: int,
num_experts: int,
k: int = 1,
capacity_factor: float = 1.0,
eval_capacity_factor: float = 1.0,
min_capacity: int = 8,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True) -> None:
def __init__(
self,
model_dim: int,
num_experts: int,
k: int = 1,
capacity_factor: float = 1.0,
eval_capacity_factor: float = 1.0,
min_capacity: int = 8,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
) -> None:
super().__init__()
# Only top-1 and top-2 are supported at the moment.
if k != 1 and k != 2:
raise ValueError('Only top-1 and top-2 gatings are supported.')
if k not in (1, 2):
raise ValueError("Only top-1 and top-2 gatings are supported.")
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False).float()
self.k = k
self.capacity_factor = capacity_factor
@ -378,34 +367,40 @@ class TopKGate(Module):
self.drop_tokens = drop_tokens
self.use_rts = use_rts
def forward(self,
input: torch.Tensor,
used_token: torch.Tensor = None,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore
def forward(
self, inputs: torch.Tensor, used_token: torch.Tensor = None
) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore
if self.wall_clock_breakdown:
timer('TopKGate').start()
timer("TopKGate").start()
if self.wg.weight.dtype != torch.float32:
self.wg = self.wg.float()
input_fp32 = input.float()
inputs_fp32 = inputs.float()
# input jittering
if self.noisy_gate_policy == 'Jitter' and self.training:
input_fp32 = multiplicative_jitter(input_fp32, device=input.device)
logits = self.wg(input_fp32)
if self.noisy_gate_policy == "Jitter" and self.training:
inputs_fp32 = multiplicative_jitter(inputs_fp32, device=inputs.device)
logits = self.wg(inputs_fp32)
if self.k == 1:
gate_output = top1gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity, used_token, self.noisy_gate_policy if self.training else None,
self.drop_tokens, self.use_rts, use_tutel)
gate_output = top1gating(
logits,
self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity,
used_token,
self.noisy_gate_policy if self.training else None,
self.drop_tokens,
self.use_rts,
)
else:
gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity)
gate_output = top2gating(
logits, self.capacity_factor if self.training else self.eval_capacity_factor, self.min_capacity
)
if self.wall_clock_breakdown:
timer('TopKGate').stop()
self.gate_time = timer('TopKGate').elapsed(reset=False)
timer("TopKGate").stop()
self.gate_time = timer("TopKGate").elapsed(reset=False)
return gate_output
@ -416,7 +411,7 @@ class MOELayer(Base):
gate = TopKGate(model_dim, num_experts)
moe = MOELayer(gate, expert)
output = moe(input)
output = moe(inputs)
l_aux = moe.l_aux
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
@ -428,12 +423,7 @@ class MOELayer(Base):
expert network
"""
def __init__(self,
gate: Module,
experts: Module,
ep_group,
ep_size,
num_local_experts: int) -> None:
def __init__(self, gate: Module, experts: Module, ep_group, ep_size, num_local_experts: int) -> None:
super().__init__()
self.gate = gate
self.experts = experts
@ -445,59 +435,59 @@ class MOELayer(Base):
self.time_moe = 0.0
self.wall_clock_breakdown = False
def _set_ep_group(self, ep_group):
self.ep_group = ep_group
def forward(self, *input: Tensor, **kwargs: Any) -> Tensor:
def forward(self, *inputs: Tensor) -> Tensor:
if self.wall_clock_breakdown:
timer('moe').start()
timer("moe").start()
# Implement Algorithm 2 from GShard paper.
d_model = input[0].shape[-1]
d_model = inputs[0].shape[-1]
# Initial implementation -> Reshape into S tokens by dropping sequence dimension.
# Reshape into G groups so that each group can distribute tokens equally
# group_size = kwargs['group_size'] if 'group_size' in kwargs.keys() else 1
reshaped_input = input[0].reshape(-1, d_model)
reshaped_inputs = inputs[0].reshape(-1, d_model)
self.l_aux, combine_weights, dispatch_mask, self.exp_counts = self.gate(reshaped_input, input[1])
dispatched_input = einsum("sec,sm->ecm", dispatch_mask.type_as(input[0]), reshaped_input) ## TODO: heavy memory usage due to long sequence length
self.l_aux, combine_weights, dispatch_mask, self.exp_counts = self.gate(reshaped_inputs, inputs[1])
dispatched_inputs = einsum(
"sec,sm->ecm", dispatch_mask.type_as(inputs[0]), reshaped_inputs
) # TODO: heavy memory usage due to long sequence length
if self.wall_clock_breakdown:
timer('falltoall').start()
timer("falltoall").start()
dispatched_input = _AllToAll.apply(self.ep_group, dispatched_input)
dispatched_inputs = _AllToAll.apply(self.ep_group, dispatched_inputs)
if self.wall_clock_breakdown:
timer('falltoall').stop()
self.time_falltoall = timer('falltoall').elapsed(reset=False)
timer("falltoall").stop()
self.time_falltoall = timer("falltoall").elapsed(reset=False)
# Re-shape after all-to-all: ecm -> gecm
dispatched_input = dispatched_input.reshape(self.ep_size, self.num_local_experts, -1, d_model)
dispatched_inputs = dispatched_inputs.reshape(self.ep_size, self.num_local_experts, -1, d_model)
expert_output = self.experts(dispatched_input)
expert_output = self.experts(dispatched_inputs)
if self.wall_clock_breakdown:
timer('salltoall').start()
timer("salltoall").start()
expert_output = _AllToAll.apply(self.ep_group, expert_output)
if self.wall_clock_breakdown:
timer('salltoall').stop()
self.time_salltoall = timer('salltoall').elapsed(reset=False)
timer("salltoall").stop()
self.time_salltoall = timer("salltoall").elapsed(reset=False)
# Re-shape back: gecm -> ecm
expert_output = expert_output.reshape(self.ep_size * self.num_local_experts, -1, d_model)
combined_output = einsum("sec,ecm->sm", combine_weights.type_as(input[0]), expert_output)
combined_output = einsum("sec,ecm->sm", combine_weights.type_as(inputs[0]), expert_output)
a = combined_output.reshape(input[0].shape)
a = combined_output.reshape(inputs[0].shape)
if self.wall_clock_breakdown:
timer('moe').stop()
self.time_moe = timer('moe').elapsed(reset=False)
timer("moe").stop()
self.time_moe = timer("moe").elapsed(reset=False)
return a