mirror of https://github.com/InternLM/InternLM
fix AutoModel
parent
3ab5c5294d
commit
59d7a1d58d
|
@ -17,9 +17,8 @@ python tools/transformers/convert2hf.py --src_folder origin_ckpt/ --tgt_folder h
|
|||
然后可以使用 `from_pretrained` 接口加载:
|
||||
|
||||
```python
|
||||
from modeling_internlm import InternLMForCausalLM
|
||||
|
||||
model = InternForCausalLM.from_pretrained("hf_ckpt/")
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
>>> model = AutoModel.from_pretrained("hf_ckpt/", trust_remote_code=True).cuda()
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -16,9 +16,8 @@ python tools/transformers/convert2hf.py --src_folder origin_ckpt/ --tgt_folder h
|
|||
Then, you can load it using the `from_pretrained` interface:
|
||||
|
||||
```python
|
||||
from modeling_internlm import InternLMForCausalLM
|
||||
|
||||
model = InternForCausalLM.from_pretrained("hf_ckpt/")
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
>>> model = AutoModel.from_pretrained("hf_ckpt/", trust_remote_code=True).cuda()
|
||||
```
|
||||
|
||||
`intern_moss_example.py` demonstrates an example of how to use LoRA for fine-tuning on the `fnlp/moss-moon-002-sft` dataset.
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import argparse
|
||||
import math
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
|
@ -163,6 +164,12 @@ if __name__ == "__main__":
|
|||
|
||||
os.makedirs(target_folder, exist_ok=True)
|
||||
model.save_pretrained(target_folder, max_shard_size="20GB")
|
||||
# TODO There should be a better way to add this.
|
||||
with open(os.path.join(target_folder, "config.json")) as fp:
|
||||
config_dict = json.load(fp)
|
||||
config_dict["auto_map"]["AutoModel"] = "modeling_internlm.InternLMModel"
|
||||
with open(os.path.join(target_folder, "config.json"), "w") as fp:
|
||||
json.dump(config_dict, fp, indent=2)
|
||||
|
||||
tokenizer = InternLMTokenizer(args.tokenizer)
|
||||
tokenizer.save_pretrained(target_folder)
|
||||
|
|
Loading…
Reference in New Issue