mirror of https://github.com/InternLM/InternLM
Update readme for news of InternLM-Chat-7B-v1.1 and Lagent (#213)
* update readme * fix typopull/214/head
parent
cc3c48ae47
commit
58108413bd
|
@ -45,6 +45,10 @@ InternLM ,即书生·浦语大模型,包含面向实用场景的70亿参数
|
|||
|
||||
提供了支持模型预训练的轻量级训练框架,无需安装大量依赖包,一套代码支持千卡预训练和单卡人类偏好对齐训练,同时实现了极致的性能优化,实现千卡训练下近90%加速效率。
|
||||
|
||||
## 新闻
|
||||
|
||||
我们开源了 InternLM-Chat-7B v1.1。该模型能够调用代码解释器和工具插件。你可以在 [Lagent](https://github.com/InternLM/lagent) 中体验这些新功能。
|
||||
|
||||
## InternLM-7B
|
||||
|
||||
### 性能评测
|
||||
|
@ -74,6 +78,7 @@ InternLM ,即书生·浦语大模型,包含面向实用场景的70亿参数
|
|||
| 模型 | InternLM 格式权重下载地址 | Transformers 格式权重下载地址 |
|
||||
| -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------ |
|
||||
| **InternLM 7B** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-7b) | [🤗internlm/intern-7b](https://huggingface.co/internlm/internlm-7b) |
|
||||
| **InternLM Chat 7B v1.1** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b-v1.1) | [🤗internlm/intern-chat-7b-v1.1](https://huggingface.co/internlm/internlm-chat-7b-v1.1) |
|
||||
| **InternLM Chat 7B** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b) | [🤗internlm/intern-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
|
||||
| **InternLM Chat 7B 8k** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b-8k) | [🤗internlm/intern-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k)
|
||||
|
||||
|
|
11
README.md
11
README.md
|
@ -35,9 +35,6 @@
|
|||
👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
InternLM has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics:
|
||||
|
@ -48,6 +45,11 @@ InternLM has open-sourced a 7 billion parameter base model and a chat model tail
|
|||
|
||||
Additionally, a lightweight training framework is offered to support model pre-training without the need for extensive dependencies. With a single codebase, it supports pre-training on large-scale clusters with thousands of GPUs, and fine-tuning on a single GPU while achieving remarkable performance optimizations. InternLM achieves nearly 90% acceleration efficiency during training on 1024 GPUs.
|
||||
|
||||
## News
|
||||
|
||||
InternLM-7B-Chat v1.1 is released with code interpreter and function calling capability. You can try it with [Lagent](https://github.com/InternLM/lagent)
|
||||
-
|
||||
|
||||
## InternLM-7B
|
||||
|
||||
### Performance Evaluation
|
||||
|
@ -77,6 +79,7 @@ InternLM 7B and InternLM 7B Chat, trained using InternLM, have been open-sourced
|
|||
| Model | InternLM Format Weight Download Link | Transformers Format Weight Download Link |
|
||||
| ----------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- |
|
||||
| **InternLM 7B** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-7b) | [🤗internlm/intern-7b](https://huggingface.co/internlm/internlm-7b) |
|
||||
| **InternLM Chat 7B v1.1** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b-v1.1) | [🤗internlm/intern-chat-7b-v1.1](https://huggingface.co/internlm/internlm-chat-7b-v1.1) |
|
||||
| **InternLM Chat 7B** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b) | [🤗internlm/intern-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) |
|
||||
| **InternLM Chat 7B 8k** | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b-8k) | [🤗internlm/intern-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k) |
|
||||
|
||||
|
@ -136,7 +139,7 @@ We use [LMDeploy](https://github.com/InternLM/LMDeploy) to complete the one-clic
|
|||
```
|
||||
|
||||
3. After exporting the model, you can start a server and have a conversation with the deployed model using the following command:
|
||||
|
||||
|
||||
```bash
|
||||
bash workspace/service_docker_up.sh
|
||||
python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
|
||||
|
|
Loading…
Reference in New Issue