mirror of https://github.com/InternLM/InternLM
Fix invalid urls of InternEvo (#635)
parent
56939d7589
commit
4fd9391594
|
@ -6,8 +6,7 @@ We recommend two projects to fine-tune InternLM.
|
||||||
|
|
||||||
1. [XTuner](https://github.com/InternLM/xtuner) is an efficient, flexible and full-featured toolkit for fine-tuning large models.
|
1. [XTuner](https://github.com/InternLM/xtuner) is an efficient, flexible and full-featured toolkit for fine-tuning large models.
|
||||||
|
|
||||||
2. [InternLM-Train](): brief introduction
|
2. [InternEvo](https://github.com/InternLM/InternEvo/) is a powerful training framework that supports large-scale pre-training and finetuning.
|
||||||
|
|
||||||
|
|
||||||
## XTuner
|
## XTuner
|
||||||
|
|
||||||
|
@ -95,3 +94,7 @@ LLaVA-InternLM2-7B:
|
||||||
```shell
|
```shell
|
||||||
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## InternEvo
|
||||||
|
|
||||||
|
[TODO]
|
||||||
|
|
|
@ -2,12 +2,11 @@
|
||||||
|
|
||||||
[English](./README.md) | 简体中文
|
[English](./README.md) | 简体中文
|
||||||
|
|
||||||
我们推荐以下两种框架微调 InternLM
|
我们推荐以下两种框架微调 InternLM:
|
||||||
|
|
||||||
1. [XTuner](https://github.com/InternLM/xtuner) 是一个高效、灵活、全能的轻量化大模型微调工具库。
|
1. [XTuner](https://github.com/InternLM/xtuner) 是一个高效、灵活、全能的轻量化大模型微调工具库。
|
||||||
|
|
||||||
2. [InternLM-Train](): brief introduction
|
2. [InternEvo](https://github.com/InternLM/InternEvo/) 是一个支持大规模预训练和微调的训练框架。
|
||||||
|
|
||||||
|
|
||||||
## XTuner
|
## XTuner
|
||||||
|
|
||||||
|
@ -18,7 +17,6 @@
|
||||||
3. 兼容 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀,轻松应用各种 ZeRO 训练优化策略。
|
3. 兼容 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀,轻松应用各种 ZeRO 训练优化策略。
|
||||||
4. 训练所得模型可无缝接入部署工具库 [LMDeploy](https://github.com/InternLM/lmdeploy)、大规模评测工具库 [OpenCompass](https://github.com/open-compass/opencompass) 及 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)。
|
4. 训练所得模型可无缝接入部署工具库 [LMDeploy](https://github.com/InternLM/lmdeploy)、大规模评测工具库 [OpenCompass](https://github.com/open-compass/opencompass) 及 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)。
|
||||||
|
|
||||||
|
|
||||||
### 安装
|
### 安装
|
||||||
|
|
||||||
- 借助 conda 准备虚拟环境
|
- 借助 conda 准备虚拟环境
|
||||||
|
@ -36,7 +34,6 @@
|
||||||
|
|
||||||
### 微调
|
### 微调
|
||||||
|
|
||||||
|
|
||||||
- **步骤 0**,准备配置文件。XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看所有 InternLM2 的预置配置文件:
|
- **步骤 0**,准备配置文件。XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看所有 InternLM2 的预置配置文件:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
|
@ -91,6 +88,11 @@ xtuner chat internlm/internlm2-chat-7b --adapter xtuner/internlm2-chat-7b-qlora-
|
||||||
```
|
```
|
||||||
|
|
||||||
与 LLaVA-InternLM2-7B 对话:
|
与 LLaVA-InternLM2-7B 对话:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## InternEvo
|
||||||
|
|
||||||
|
[TODO]
|
||||||
|
|
Loading…
Reference in New Issue