pull/717/head
zhulin1 2024-02-29 11:33:52 +08:00
parent 3002cbd265
commit 4a61dc799e
1 changed files with 56 additions and 7 deletions

View File

@ -1,5 +1,7 @@
import pytest
import torch
from auto_gptq.modeling import BaseGPTQForCausalLM
from lmdeploy import TurbomindEngineConfig, pipeline
from PIL import Image
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
@ -20,6 +22,7 @@ class TestChat:
'model_name',
[
'internlm/internlm2-chat-7b', 'internlm/internlm2-chat-7b-sft',
'internlm/internlm2-chat-20b', 'internlm/internlm2-chat-20b-sft',
'internlm/internlm2-chat-1_8b', 'internlm/internlm2-chat-1_8b-sft'
],
)
@ -57,6 +60,23 @@ class TestChat:
assert_model(response)
class TestChatAwq:
"""Test cases for chat model."""
@pytest.mark.parametrize(
'model_name',
['internlm/internlm2-chat-20b-4bits'],
)
def test_demo_default(self, model_name):
engine_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline('internlm/internlm2-chat-20b-4bits',
backend_config=engine_config)
responses = pipe(['Hi, pls intro yourself', 'Shanghai is'])
print(responses)
for response in responses:
assert_model(response.text)
class TestBase:
"""Test cases for base model."""
@ -64,6 +84,7 @@ class TestBase:
'model_name',
[
'internlm/internlm2-7b', 'internlm/internlm2-base-7b',
'internlm/internlm2-20b', 'internlm/internlm2-base-20b',
'internlm/internlm2-1_8b'
],
)
@ -142,6 +163,7 @@ class TestMMModel:
'model_name',
[
'internlm/internlm-xcomposer2-7b',
'internlm/internlm-xcomposer2-7b-4bit'
],
)
def test_demo_default(self, model_name):
@ -150,12 +172,16 @@ class TestMMModel:
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float32,
trust_remote_code=True).cuda()
if '4bit' in model_name:
model = InternLMXComposer2QForCausalLM.from_quantized(
model_name, trust_remote_code=True, device='cuda:0').eval()
else:
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
model = model.eval()
img_path_list = [
'tests/panda.jpg',
@ -177,7 +203,7 @@ class TestMMModel:
do_sample=False)
print(response)
assert len(response) != 0
assert 'panda' in response
assert ' panda ' in response
query = '<ImageHere> <ImageHere>请根据图片写一篇作文:我最喜欢的小动物。' \
+ '要求:选准角度,确定立意,明确文体,自拟标题。'
@ -199,6 +225,7 @@ class TestMMVlModel:
'model_name',
[
'internlm/internlm-xcomposer2-vl-7b',
'internlm/internlm-xcomposer2-vl-7b-4bit'
],
)
def test_demo_default(self, model_name):
@ -208,8 +235,13 @@ class TestMMVlModel:
torch.set_grad_enabled(False)
# init model and tokenizer
model = AutoModel.from_pretrained(
model_name, trust_remote_code=True).cuda().eval()
if '4bit' in model_name:
model = InternLMXComposer2QForCausalLM.from_quantized(
model_name, trust_remote_code=True, device='cuda:0').eval()
else:
model = AutoModel.from_pretrained(
model_name, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
@ -225,3 +257,20 @@ class TestMMVlModel:
assert len(response) != 0
assert 'Oscar Wilde' in response
assert 'Live life with no excuses, travel with no regret' in response
class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
layers_block_name = 'model.layers'
outside_layer_modules = [
'vit',
'vision_proj',
'model.tok_embeddings',
'model.norm',
'output',
]
inside_layer_modules = [
['attention.wqkv.linear'],
['attention.wo.linear'],
['feed_forward.w1.linear', 'feed_forward.w3.linear'],
['feed_forward.w2.linear'],
]