mirror of https://github.com/InternLM/InternLM
.github/
parent
3002cbd265
commit
4a61dc799e
|
@ -1,5 +1,7 @@
|
|||
import pytest
|
||||
import torch
|
||||
from auto_gptq.modeling import BaseGPTQForCausalLM
|
||||
from lmdeploy import TurbomindEngineConfig, pipeline
|
||||
from PIL import Image
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
@ -20,6 +22,7 @@ class TestChat:
|
|||
'model_name',
|
||||
[
|
||||
'internlm/internlm2-chat-7b', 'internlm/internlm2-chat-7b-sft',
|
||||
'internlm/internlm2-chat-20b', 'internlm/internlm2-chat-20b-sft',
|
||||
'internlm/internlm2-chat-1_8b', 'internlm/internlm2-chat-1_8b-sft'
|
||||
],
|
||||
)
|
||||
|
@ -57,6 +60,23 @@ class TestChat:
|
|||
assert_model(response)
|
||||
|
||||
|
||||
class TestChatAwq:
|
||||
"""Test cases for chat model."""
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
['internlm/internlm2-chat-20b-4bits'],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
engine_config = TurbomindEngineConfig(model_format='awq')
|
||||
pipe = pipeline('internlm/internlm2-chat-20b-4bits',
|
||||
backend_config=engine_config)
|
||||
responses = pipe(['Hi, pls intro yourself', 'Shanghai is'])
|
||||
print(responses)
|
||||
for response in responses:
|
||||
assert_model(response.text)
|
||||
|
||||
|
||||
class TestBase:
|
||||
"""Test cases for base model."""
|
||||
|
||||
|
@ -64,6 +84,7 @@ class TestBase:
|
|||
'model_name',
|
||||
[
|
||||
'internlm/internlm2-7b', 'internlm/internlm2-base-7b',
|
||||
'internlm/internlm2-20b', 'internlm/internlm2-base-20b',
|
||||
'internlm/internlm2-1_8b'
|
||||
],
|
||||
)
|
||||
|
@ -142,6 +163,7 @@ class TestMMModel:
|
|||
'model_name',
|
||||
[
|
||||
'internlm/internlm-xcomposer2-7b',
|
||||
'internlm/internlm-xcomposer2-7b-4bit'
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
|
@ -150,12 +172,16 @@ class TestMMModel:
|
|||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
||||
# it will be loaded as float32 and might cause OOM Error.
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=torch.float32,
|
||||
trust_remote_code=True).cuda()
|
||||
if '4bit' in model_name:
|
||||
model = InternLMXComposer2QForCausalLM.from_quantized(
|
||||
model_name, trust_remote_code=True, device='cuda:0').eval()
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=torch.float16,
|
||||
trust_remote_code=True).cuda()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
|
||||
model = model.eval()
|
||||
img_path_list = [
|
||||
'tests/panda.jpg',
|
||||
|
@ -177,7 +203,7 @@ class TestMMModel:
|
|||
do_sample=False)
|
||||
print(response)
|
||||
assert len(response) != 0
|
||||
assert 'panda' in response
|
||||
assert ' panda ' in response
|
||||
|
||||
query = '<ImageHere> <ImageHere>请根据图片写一篇作文:我最喜欢的小动物。' \
|
||||
+ '要求:选准角度,确定立意,明确文体,自拟标题。'
|
||||
|
@ -199,6 +225,7 @@ class TestMMVlModel:
|
|||
'model_name',
|
||||
[
|
||||
'internlm/internlm-xcomposer2-vl-7b',
|
||||
'internlm/internlm-xcomposer2-vl-7b-4bit'
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
|
@ -208,8 +235,13 @@ class TestMMVlModel:
|
|||
torch.set_grad_enabled(False)
|
||||
|
||||
# init model and tokenizer
|
||||
model = AutoModel.from_pretrained(
|
||||
model_name, trust_remote_code=True).cuda().eval()
|
||||
if '4bit' in model_name:
|
||||
model = InternLMXComposer2QForCausalLM.from_quantized(
|
||||
model_name, trust_remote_code=True, device='cuda:0').eval()
|
||||
else:
|
||||
model = AutoModel.from_pretrained(
|
||||
model_name, trust_remote_code=True).cuda().eval()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
|
||||
|
@ -225,3 +257,20 @@ class TestMMVlModel:
|
|||
assert len(response) != 0
|
||||
assert 'Oscar Wilde' in response
|
||||
assert 'Live life with no excuses, travel with no regret' in response
|
||||
|
||||
|
||||
class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
|
||||
layers_block_name = 'model.layers'
|
||||
outside_layer_modules = [
|
||||
'vit',
|
||||
'vision_proj',
|
||||
'model.tok_embeddings',
|
||||
'model.norm',
|
||||
'output',
|
||||
]
|
||||
inside_layer_modules = [
|
||||
['attention.wqkv.linear'],
|
||||
['attention.wo.linear'],
|
||||
['feed_forward.w1.linear', 'feed_forward.w3.linear'],
|
||||
['feed_forward.w2.linear'],
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue