mirror of https://github.com/InternLM/InternLM
[Tool]: Support converting InternLM2 to Llama format (#627)
Co-authored-by: x54-729 <whxiaohao@163.com>pull/651/head
parent
5d9ef216d8
commit
4281caf30b
|
@ -0,0 +1,14 @@
|
|||
# InternLM2 tools
|
||||
|
||||
## 1. Convert to LLaMA
|
||||
|
||||
We offer the `convert2llama.py`, designed to seamlessly transform InternLM2 (HF format) into LLaMA (HF format). Here, HF refers to the format used by HuggingFace Transformers.
|
||||
|
||||
### Usage
|
||||
```
|
||||
python convert2llama.py --src /path/to/internlm2/ckpt --tgt /path/to/target/ckpt
|
||||
```
|
||||
|
||||
### Note
|
||||
|
||||
While the `convert2llama.py` tool is available, we still advise opting for InternLM2 when practical, chiefly due to its superior efficiency. InternLM2, which is adapted from LLaMA, streamlines the process by integrating the `Wq`, `Wk`, `Wv` weight matrices into a single matrix `Wqkv`. This integration leads to approximately a **5%** speed increase during training. Given the substantial costs associated with pre-training, this efficiency boost can result in significant savings.
|
|
@ -0,0 +1,136 @@
|
|||
# Copyright (c) InternLM. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig, LlamaConfig, LlamaTokenizer
|
||||
|
||||
|
||||
def save_conifg(config, tgt):
|
||||
config_dict = config.to_dict()
|
||||
unnecessary_keys = [
|
||||
"_name_or_path",
|
||||
"auto_map",
|
||||
"transformers_version",
|
||||
"model_type",
|
||||
"architectures",
|
||||
"tokenizer_class",
|
||||
"attn_implementation",
|
||||
]
|
||||
for k in unnecessary_keys:
|
||||
config_dict.pop(k, None)
|
||||
config_dict["attention_bias"] = config_dict.pop("bias")
|
||||
config_dict["architectures"] = ["LlamaForCausalLM"]
|
||||
llama_config = LlamaConfig(**config_dict)
|
||||
llama_config.save_pretrained(tgt)
|
||||
|
||||
|
||||
def convert(src, tgt):
|
||||
"""Convert InternLM2 huggingface checkpoints to Llama-style."""
|
||||
|
||||
print("Convert InternLM2 huggingface checkpoints to Llama...")
|
||||
|
||||
config = AutoConfig.from_pretrained(src, trust_remote_code=True)
|
||||
assert not config.bias, "Cannot convert InternLM Model with bias to LLaMA."
|
||||
|
||||
head_dim = config.hidden_size // config.num_attention_heads
|
||||
num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
||||
|
||||
# load index json file
|
||||
index_file = os.path.join(src, "pytorch_model.bin.index.json")
|
||||
if os.path.exists(index_file):
|
||||
with open(index_file) as fp:
|
||||
index_dict = json.load(fp)
|
||||
index_dict["weight_map"] = {}
|
||||
else:
|
||||
index_dict = None
|
||||
|
||||
os.makedirs(tgt, exist_ok=True)
|
||||
for filename in tqdm(os.listdir(src)):
|
||||
if not filename.endswith(".bin"):
|
||||
continue
|
||||
states = torch.load(os.path.join(src, filename))
|
||||
llama_states = {}
|
||||
for k, v in states.copy().items():
|
||||
if "wqkv" in k:
|
||||
v = rearrange(
|
||||
v,
|
||||
"(h gs d) dim -> h gs d dim",
|
||||
gs=2 + num_key_value_groups,
|
||||
d=head_dim,
|
||||
)
|
||||
wq, wk, wv = torch.split(v, [num_key_value_groups, 1, 1], dim=1)
|
||||
wq = rearrange(wq, "h gs d dim -> (h gs d) dim")
|
||||
wk = rearrange(wk, "h gs d dim -> (h gs d) dim")
|
||||
wv = rearrange(wv, "h gs d dim -> (h gs d) dim")
|
||||
_prefix = k.split("attention")[0]
|
||||
wq_key = _prefix + "self_attn.q_proj.weight"
|
||||
wk_key = _prefix + "self_attn.k_proj.weight"
|
||||
wv_key = _prefix + "self_attn.v_proj.weight"
|
||||
llama_states[wq_key] = wq.clone()
|
||||
llama_states[wk_key] = wk.clone()
|
||||
llama_states[wv_key] = wv.clone()
|
||||
|
||||
elif "attention.wo" in k:
|
||||
new_k = k.replace("attention.wo", "self_attn.o_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w1" in k:
|
||||
new_k = k.replace("feed_forward.w1", "mlp.gate_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w2" in k:
|
||||
new_k = k.replace("feed_forward.w2", "mlp.down_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w3" in k:
|
||||
new_k = k.replace("feed_forward.w3", "mlp.up_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "attention_norm" in k:
|
||||
new_k = k.replace("attention_norm", "input_layernorm")
|
||||
llama_states[new_k] = v
|
||||
elif "ffn_norm" in k:
|
||||
new_k = k.replace("ffn_norm", "post_attention_layernorm")
|
||||
llama_states[new_k] = v
|
||||
elif "tok_embeddings" in k:
|
||||
llama_states["model.embed_tokens.weight"] = v
|
||||
elif "output" in k:
|
||||
llama_states["lm_head.weight"] = v
|
||||
else:
|
||||
llama_states[k] = v
|
||||
|
||||
if index_dict is not None:
|
||||
for k in llama_states:
|
||||
index_dict["weight_map"][k] = filename
|
||||
print(f"Saving to {os.path.join(tgt, filename)}...", flush=True)
|
||||
torch.save(llama_states, os.path.join(tgt, filename))
|
||||
del states
|
||||
|
||||
print("Saving config and tokenizer...")
|
||||
# index.json
|
||||
if index_dict is not None:
|
||||
with open(os.path.join(tgt, "pytorch_model.bin.index.json"), "w") as fp:
|
||||
json.dump(index_dict, fp, indent=2)
|
||||
# tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(src)
|
||||
tokenizer.init_kwargs.pop("auto_map", None)
|
||||
tokenizer.save_pretrained(tgt)
|
||||
# config
|
||||
save_conifg(config, tgt)
|
||||
print("Done!")
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str, help="Input folder")
|
||||
parser.add_argument("--tgt", type=str, help="Output folder")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
|
||||
convert(args.src, args.tgt)
|
Loading…
Reference in New Issue