mirror of https://github.com/InternLM/InternLM
remove some unnecessary code
parent
3b1c04d7be
commit
3dabb6d308
|
@ -6,11 +6,12 @@ from typing import Optional
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from torch.distributed import ProcessGroup
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
||||
from flash_attn.utils.distributed import reduce_scatter, all_reduce
|
||||
|
||||
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.utils import all_reduce, fused_dense_func_torch, reduce_scatter
|
||||
from internlm.model.utils import fused_dense_func_torch
|
||||
|
||||
|
||||
class ScaleColumnParallelLinear(nn.Linear):
|
||||
|
@ -109,23 +110,7 @@ class RewardModelLinear(ScaleColumnParallelLinear):
|
|||
)
|
||||
|
||||
|
||||
class ColumnParallelLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
process_group: ProcessGroup,
|
||||
bias: bool = True,
|
||||
sequence_parallel=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
if out_features % world_size != 0:
|
||||
raise ValueError(f"out_features ({out_features}) must be divisible by " f"world_size ({world_size})")
|
||||
super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype)
|
||||
self.process_group = process_group
|
||||
self.sequence_parallel = sequence_parallel
|
||||
class ColumnParallelLinearTorch(ColumnParallelLinear):
|
||||
|
||||
def forward(self, x):
|
||||
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
||||
|
@ -137,25 +122,7 @@ class ColumnParallelLinear(nn.Linear):
|
|||
)
|
||||
|
||||
|
||||
class RowParallelLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
process_group: ProcessGroup,
|
||||
bias: bool = True,
|
||||
sequence_parallel=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
rank = torch.distributed.get_rank(process_group)
|
||||
if in_features % world_size != 0:
|
||||
raise ValueError(f"in_features ({in_features}) must be divisible by " f"world_size ({world_size})")
|
||||
# Only rank 0 will have bias
|
||||
super().__init__(in_features // world_size, out_features, bias=bias and rank == 0, device=device, dtype=dtype)
|
||||
self.process_group = process_group
|
||||
self.sequence_parallel = sequence_parallel
|
||||
class RowParallelLinearTorch(RowParallelLinear):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
|
@ -198,7 +165,7 @@ class FeedForward(nn.Module):
|
|||
|
||||
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.w1 = ColumnParallelLinear(
|
||||
self.w1 = ColumnParallelLinearTorch(
|
||||
in_features,
|
||||
hidden_features,
|
||||
process_group,
|
||||
|
@ -207,10 +174,10 @@ class FeedForward(nn.Module):
|
|||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.w2 = ColumnParallelLinear(
|
||||
self.w2 = ColumnParallelLinearTorch(
|
||||
in_features, hidden_features, process_group, bias, sequence_parallel=False, device=device, dtype=dtype
|
||||
)
|
||||
self.w3 = RowParallelLinear(
|
||||
self.w3 = RowParallelLinearTorch(
|
||||
hidden_features,
|
||||
out_features,
|
||||
process_group,
|
||||
|
|
|
@ -17,7 +17,7 @@ from torch import nn
|
|||
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.embedding import RotaryEmbedding
|
||||
from internlm.model.linear import ColumnParallelLinear, RowParallelLinear
|
||||
from internlm.model.linear import ColumnParallelLinearTorch, RowParallelLinearTorch
|
||||
|
||||
|
||||
class MHA(nn.Module):
|
||||
|
@ -78,7 +78,7 @@ class MHA(nn.Module):
|
|||
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base, device=device)
|
||||
|
||||
# notice here should change bias=True
|
||||
self.Wqkv = ColumnParallelLinear(
|
||||
self.Wqkv = ColumnParallelLinearTorch(
|
||||
embed_dim,
|
||||
3 * embed_dim,
|
||||
process_group,
|
||||
|
@ -95,7 +95,7 @@ class MHA(nn.Module):
|
|||
)
|
||||
|
||||
# output projection always have the bias (for now)
|
||||
self.out_proj = RowParallelLinear(
|
||||
self.out_proj = RowParallelLinearTorch(
|
||||
embed_dim, embed_dim, process_group, sequence_parallel=sequence_parallel, **factory_kwargs
|
||||
)
|
||||
# need to assign tp attribute so that internlm know it is tensor parallel module
|
||||
|
|
|
@ -7,8 +7,9 @@ import torch
|
|||
import torch.nn.functional as F
|
||||
from flash_attn.ops.fused_dense import FusedDenseFunc
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
from torch.cuda.amp import custom_bwd
|
||||
from torch.distributed import ProcessGroup
|
||||
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw
|
||||
|
||||
from internlm.core.context import global_context as gpc
|
||||
|
||||
|
@ -80,67 +81,6 @@ def gather_forward_split_backward(input_, parallel_mode, dim):
|
|||
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
|
||||
|
||||
|
||||
# the following communicators are adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/distributed.py
|
||||
def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
output = torch.empty(world_size * input_.shape[0], *input_.shape[1:], dtype=input_.dtype, device=input_.device)
|
||||
handle = torch.distributed.all_gather_into_tensor(
|
||||
output, input_.contiguous(), group=process_group, async_op=async_op
|
||||
)
|
||||
return output, handle
|
||||
|
||||
|
||||
def reduce_scatter_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
assert input_.shape[0] % world_size == 0
|
||||
output = torch.empty(input_.shape[0] // world_size, *input_.shape[1:], dtype=input_.dtype, device=input_.device)
|
||||
handle = torch.distributed.reduce_scatter_tensor(
|
||||
output, input_.contiguous(), group=process_group, async_op=async_op
|
||||
)
|
||||
return output, handle
|
||||
|
||||
|
||||
def all_reduce_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
|
||||
input_ = input_.contiguous()
|
||||
handle = torch.distributed.all_reduce(input_, group=process_group, async_op=async_op)
|
||||
return input_, handle
|
||||
|
||||
|
||||
class ReduceScatterFunc(torch.autograd.Function):
|
||||
"""Reduce scatter the input from the sequence parallel region and concatenate."""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor:
|
||||
ctx.process_group = process_group
|
||||
output, _ = reduce_scatter_raw(input_, process_group)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output: Tensor):
|
||||
grad_input, _ = all_gather_raw(grad_output, ctx.process_group)
|
||||
return grad_input, None
|
||||
|
||||
|
||||
class AllReduceFunc(torch.autograd.Function):
|
||||
"""Gather the input from sequence parallel region and concatenate."""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_: Tensor, process_group: ProcessGroup) -> Tensor:
|
||||
ctx.process_group = process_group
|
||||
output, _ = all_reduce_raw(input_, process_group)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output: Tensor):
|
||||
return grad_output, None
|
||||
|
||||
|
||||
# Supports autograd, but does not support async
|
||||
reduce_scatter = ReduceScatterFunc.apply
|
||||
# Supports autograd, but does not support async
|
||||
all_reduce = AllReduceFunc.apply
|
||||
|
||||
|
||||
def linear_bias_wgrad_torch(input, grad_output, has_d_bias):
|
||||
assert input.dtype == grad_output.dtype
|
||||
grad_weight = torch.matmul(grad_output.t(), input)
|
||||
|
@ -149,45 +89,7 @@ def linear_bias_wgrad_torch(input, grad_output, has_d_bias):
|
|||
|
||||
|
||||
# adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py
|
||||
class FusedDenseFuncTorch(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True):
|
||||
"""
|
||||
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
|
||||
with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
|
||||
"""
|
||||
ctx.compute_weight_gradient = weight.requires_grad
|
||||
ctx.return_residual = return_residual
|
||||
ctx.process_group = process_group
|
||||
ctx.sequence_parallel = sequence_parallel
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
x = x.contiguous()
|
||||
if process_group is not None and sequence_parallel:
|
||||
# We want to kick off the all_gather early, before weight dtype conversion
|
||||
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
||||
else:
|
||||
total_x = x
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
||||
weight = weight.contiguous()
|
||||
if process_group is not None and sequence_parallel:
|
||||
handle_x.wait()
|
||||
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
||||
if min(batch_dim, n, *weight.shape) > 65535 * 32:
|
||||
raise RuntimeError("fused_dense only supports matrix dims <= 2M")
|
||||
output = F.linear(total_x, weight, bias)
|
||||
if ctx.compute_weight_gradient:
|
||||
ctx.save_for_backward(x, weight)
|
||||
else:
|
||||
ctx.save_for_backward(weight)
|
||||
return output if not return_residual else (output, x)
|
||||
class FusedDenseFuncTorch(FusedDenseFunc):
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
|
|
Loading…
Reference in New Issue