mirror of https://github.com/InternLM/InternLM
remove --tp_size; rearrange wqkv
parent
d47962c2d0
commit
3d609d8e38
|
@ -1,110 +1,116 @@
|
|||
# Copyright (c) InternLM. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
from collections import defaultdict
|
||||
import json
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig
|
||||
from transformers import AutoConfig, LlamaTokenizer, LlamaConfig
|
||||
|
||||
def save_conifg(config, tgt):
|
||||
config_dict = config.to_dict()
|
||||
unnecessary_keys = ["_name_or_path", "auto_map", "transformers_version", "model_type", "architectures", "tokenizer_class", "attn_implementation"]
|
||||
for k in unnecessary_keys:
|
||||
config_dict.pop(k, None)
|
||||
config_dict["attention_bias"] = config_dict.pop("bias")
|
||||
config_dict["architectures"] = ["LlamaForCausalLM"]
|
||||
llama_config = LlamaConfig(**config_dict)
|
||||
llama_config.save_pretrained(tgt)
|
||||
|
||||
|
||||
def split_wqkv(qkv, num_groups, q_per_kv, head_dim):
|
||||
"""Split wqkv into wq, wk, wv."""
|
||||
qkv = qkv.T
|
||||
qkv = rearrange(qkv, "o (g n i) -> o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
|
||||
|
||||
q = qkv[..., :q_per_kv, :]
|
||||
k = qkv[..., q_per_kv : q_per_kv + 1, :]
|
||||
v = qkv[..., q_per_kv + 1 : q_per_kv + 2, :]
|
||||
|
||||
q = rearrange(q, "o g n i -> o (g n i)", g=num_groups, n=q_per_kv, i=head_dim)
|
||||
k = rearrange(k, "o g n i -> o (g n i)", g=num_groups, n=1, i=head_dim)
|
||||
v = rearrange(v, "o g n i -> o (g n i)", g=num_groups, n=1, i=head_dim)
|
||||
return q.T, k.T, v.T
|
||||
|
||||
|
||||
def convert(src, tgt, tp_size):
|
||||
def convert(src, tgt):
|
||||
"""Convert InternLM2 huggingface checkpoints to Llama-style."""
|
||||
print("Loading origin checkpoints...")
|
||||
hf_states = []
|
||||
hf_state_names = []
|
||||
remain_files = []
|
||||
for filename in tqdm(os.listdir(src)):
|
||||
if not filename.endswith(".bin"):
|
||||
remain_files.append(filename)
|
||||
continue
|
||||
hf_state_names.append(filename)
|
||||
hf_states.append(torch.load(os.path.join(src, filename)))
|
||||
|
||||
print("Convert InternLM2 huggingface checkpoints to Llama...")
|
||||
|
||||
config = AutoConfig.from_pretrained(src, trust_remote_code=True)
|
||||
assert not config.bias, "Cannot convert InternLM Model with bias to LLaMA."
|
||||
|
||||
q_per_kv = config.num_attention_heads // config.num_key_value_heads
|
||||
head_dim = config.hidden_size // config.num_attention_heads
|
||||
num_heads = config.num_attention_heads
|
||||
num_heads_per_tp = num_heads // tp_size
|
||||
num_groups = num_heads_per_tp // q_per_kv
|
||||
num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
||||
|
||||
for states in tqdm(hf_states):
|
||||
tmp_states = defaultdict(defaultdict)
|
||||
|
||||
# load index json file
|
||||
index_file = os.path.join(src, "pytorch_model.bin.index.json")
|
||||
if os.path.exists(index_file):
|
||||
with open(index_file) as fp:
|
||||
index_dict = json.load(fp)
|
||||
index_dict["weight_map"] = {}
|
||||
else:
|
||||
index_dict = None
|
||||
|
||||
os.makedirs(tgt, exist_ok=True)
|
||||
for filename in tqdm(os.listdir(src)):
|
||||
if not filename.endswith(".bin"):
|
||||
continue
|
||||
states = torch.load(os.path.join(src, filename))
|
||||
llama_states = {}
|
||||
for k, v in states.copy().items():
|
||||
if "wqkv" in k:
|
||||
wqkvs = v.chunk(tp_size, 0)
|
||||
for i in range(tp_size):
|
||||
wq, wk, wv = split_wqkv(wqkvs[i], num_groups, q_per_kv, head_dim)
|
||||
|
||||
v = rearrange(
|
||||
v,
|
||||
"(h gs d) dim -> h gs d dim",
|
||||
gs=2 + num_key_value_groups,
|
||||
d=head_dim,
|
||||
)
|
||||
wq, wk, wv = torch.split(
|
||||
v, [num_key_value_groups, 1, 1], dim=1
|
||||
)
|
||||
wq = rearrange(wq, "h gs d dim -> (h gs d) dim")
|
||||
wk = rearrange(wk, "h gs d dim -> (h gs d) dim")
|
||||
wv = rearrange(wv, "h gs d dim -> (h gs d) dim")
|
||||
_prefix = k.split("attention")[0]
|
||||
wq_key = _prefix + "self_attn.q_proj.weight"
|
||||
wk_key = _prefix + "self_attn.k_proj.weight"
|
||||
wv_key = _prefix + "self_attn.v_proj.weight"
|
||||
|
||||
tmp_states[wq_key][i] = wq.clone()
|
||||
tmp_states[wk_key][i] = wk.clone()
|
||||
tmp_states[wv_key][i] = wv.clone()
|
||||
llama_states[wq_key] = wq.clone()
|
||||
llama_states[wk_key] = wk.clone()
|
||||
llama_states[wv_key] = wv.clone()
|
||||
|
||||
elif "attention.wo" in k:
|
||||
new_k = k.replace("attention.wo", "self_attn.o_proj")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w1" in k:
|
||||
new_k = k.replace("feed_forward.w1", "mlp.gate_proj")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w2" in k:
|
||||
new_k = k.replace("feed_forward.w2", "mlp.up_proj")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
new_k = k.replace("feed_forward.w2", "mlp.down_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "feed_forward.w3" in k:
|
||||
new_k = k.replace("feed_forward.w3", "mlp.down_proj")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
new_k = k.replace("feed_forward.w3", "mlp.up_proj")
|
||||
llama_states[new_k] = v
|
||||
elif "attention_norm" in k:
|
||||
new_k = k.replace("attention_norm", "input_layernorm")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
llama_states[new_k] = v
|
||||
elif "ffn_norm" in k:
|
||||
new_k = k.replace("ffn_norm", "post_attention_layernorm")
|
||||
states[new_k] = v
|
||||
del states[k]
|
||||
llama_states[new_k] = v
|
||||
elif "tok_embeddings" in k:
|
||||
states["model.embed_tokens.weight"] = v
|
||||
del states[k]
|
||||
llama_states["model.embed_tokens.weight"] = v
|
||||
elif "output" in k:
|
||||
states["lm_head.weight"] = v
|
||||
del states[k]
|
||||
llama_states["lm_head.weight"] = v
|
||||
else:
|
||||
llama_states[k] = v
|
||||
|
||||
for k, v in tmp_states.items():
|
||||
states[k] = torch.cat(list(v.values()), dim=0)
|
||||
if index_dict is not None:
|
||||
for k in llama_states.keys():
|
||||
index_dict["weight_map"][k] = filename
|
||||
print(f"Saving to {os.path.join(tgt, filename)}...", flush=True)
|
||||
torch.save(llama_states, os.path.join(tgt, filename))
|
||||
del states
|
||||
|
||||
os.makedirs(tgt, exist_ok=True)
|
||||
for i, states in enumerate(hf_states):
|
||||
print(f"Saving to {os.path.join(tgt, hf_state_names[i])}...", flush=True)
|
||||
torch.save(states, os.path.join(tgt, hf_state_names[i]))
|
||||
for filename in remain_files:
|
||||
print(f"Copying {filename}...", flush=True)
|
||||
os.system(f"cp {os.path.join(src, filename)} {tgt}")
|
||||
print("Saving config and tokenizer...")
|
||||
# index.json
|
||||
if index_dict is not None:
|
||||
with open(os.path.join(tgt, "pytorch_model.bin.index.json"), "w") as fp:
|
||||
json.dump(index_dict, fp, indent=2)
|
||||
# tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(src)
|
||||
tokenizer.init_kwargs.pop("auto_map", None)
|
||||
tokenizer.save_pretrained(tgt)
|
||||
# config
|
||||
save_conifg(config, tgt)
|
||||
print("Done!")
|
||||
|
||||
|
||||
|
@ -112,7 +118,6 @@ def parse_args():
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str, help="Input folder")
|
||||
parser.add_argument("--tgt", type=str, help="Output folder")
|
||||
parser.add_argument("--tp_size", type=int, help="world_size of tensor parallel")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@ -122,4 +127,4 @@ def parse_args():
|
|||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
|
||||
convert(args.src, args.tgt, args.tp_size)
|
||||
convert(args.src, args.tgt)
|
||||
|
|
Loading…
Reference in New Issue