fix(model/embedding.py): ci lint check error (#345)

* fix(ci): fix ci lint error

* fix(ci): fix ci lint error
pull/306/head
huangting4201 2023-09-21 14:46:22 +08:00 committed by GitHub
parent 8464425a7b
commit 3b0eff0c8a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 17 additions and 41 deletions

View File

@ -2,7 +2,6 @@ name: e2e-tests
on:
pull_request:
branches:
- "main"
- "develop"
paths-ignore:
- "doc/**"
@ -12,45 +11,16 @@ env:
SLURM_PARTITION: llm_s
jobs:
check-requirements:
training_8GPU:
runs-on: [t_cluster]
steps:
- name: mask env
run: |
echo "::add-mask::${{env.WORKSPACE_PREFIX}}"
- uses: actions/checkout@v3
with:
fetch-depth: 2
- name: check-requirements
run: |
source activate internlm-env-test
changed_files=$(git diff --name-only -r HEAD^1 HEAD)
echo $changed_files
if [[ $changed_files =~ "runtime.txt" ]]; then
pip install -r requirements/runtime.txt
fi
if [[ $changed_files =~ "torch.txt" ]]; then
pip install -r requirements/torch.txt
fi
e2e_tests:
if: ${{ always() }}
needs: check-requirements
runs-on: [t_cluster]
timeout-minutes: 30
timeout-minutes: 5
steps:
- name: mask env
run: |
echo "::add-mask::${{env.WORKSPACE_PREFIX}}"
- uses: actions/checkout@v3
- name: e2e-test
- name: training_8GPU
run: |
source activate internlm-env-test
source /mnt/petrelfs/share_data/llm_env/env/llm-flash2.0
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n8 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_8GPU" ./tests/test_training
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2TP" ./tests/test_training
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2TPSP" ./tests/test_training
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2PP" ./tests/test_training
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2PP_InterleavedOverlap" ./tests/test_training

View File

@ -241,7 +241,10 @@ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
https://github.com/huggingface/transformers/blob/eb8489971ac1415f67b0abdd1584fde8 \
b659ced9/src/transformers/models/llama/modeling_llama.py#L147
"""
def __init__(self, dim: int, base=10000, scale_base=0, device=None, max_position_embeddings=2048, scaling_factor=1.0):
def __init__(
self, dim: int, base=10000, scale_base=0, device=None, max_position_embeddings=2048, scaling_factor=1.0
):
super().__init__(dim=dim, base=base, scale_base=scale_base, device=device)
self.max_position_embeddings = max_position_embeddings
self.scaling_factor = scaling_factor
@ -279,11 +282,14 @@ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
else:
seqlen = indexes + 1 # eval_forward
if seqlen <= self.max_position_embeddings:
# Reset the tables if the sequence length has changed,
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if self._seq_len_cached > self.max_position_embeddings or seqlen > self._seq_len_cached \
or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
if (
self._seq_len_cached > self.max_position_embeddings
or seqlen > self._seq_len_cached
or self._cos_cached.device != x.device
or self._cos_cached.dtype != x.dtype
):
self._update(seqlen, x)
else:
self._update(seqlen, x)