mirror of https://github.com/InternLM/InternLM
feat(moe): add local data parallel support for experts (#376)
* add local data parallel support for experts * fix model checkpoint for local dp mode of expert * do not set ep size from configpull/391/head
parent
c8242572f2
commit
375240e039
|
@ -463,12 +463,19 @@ class ParallelContext(metaclass=SingletonMeta):
|
|||
# the recommended nettest_parallel_size is 32 GPUs
|
||||
self.nettest_parallel_size = 32
|
||||
|
||||
# TODO : data parallel size can be different with expert parallel size
|
||||
self.expert_parallel_size = self.data_parallel_size
|
||||
|
||||
if self.zero1_parallel_size <= 0:
|
||||
self.zero1_parallel_size = self.data_parallel_size
|
||||
|
||||
assert (
|
||||
self.data_parallel_size % self.config.model.get("num_experts", 1) == 0
|
||||
or self.config.model.get("num_experts", 1) % self.data_parallel_size == 0
|
||||
), "can not place the experts evenly"
|
||||
|
||||
# by default, expert_parallel_size equals to data_parallel_size, but if the number of experts is smaller
|
||||
# than data_parallel_size, set expert_parallel_size to be the number of experts to make sure each device
|
||||
# has one expert.
|
||||
self.expert_parallel_size = min(self.data_parallel_size, self.config.model.get("num_experts", 1))
|
||||
|
||||
self.check_sanity()
|
||||
|
||||
initializer_args = [
|
||||
|
@ -492,7 +499,7 @@ class ParallelContext(metaclass=SingletonMeta):
|
|||
if self.pipeline_parallel_size > 1:
|
||||
initializers.append(pgroup_initializer.Initializer_Pipeline(*initializer_args))
|
||||
if self.config.model.get("num_experts", 1) > 1:
|
||||
initializers.append(pgroup_initializer.Initializer_Expert(*initializer_args))
|
||||
initializers.append(pgroup_initializer.Initializer_Expert_Data(*initializer_args))
|
||||
for initializer in initializers:
|
||||
parallel_setting = initializer.init_dist_group()
|
||||
if isinstance(parallel_setting, list):
|
||||
|
|
|
@ -125,7 +125,8 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
# it will not manage the tensors used by mixed precision training
|
||||
self._param_store = ParameterStore(ParallelMode.ZERO1)
|
||||
self._grad_store = GradientStore(ParallelMode.DATA)
|
||||
self._bucket_store = BucketStore(ParallelMode.DATA)
|
||||
self._non_moe_bucket_store = BucketStore(ParallelMode.DATA)
|
||||
self._moe_bucket_store = BucketStore(ParallelMode.EXPERT_DATA)
|
||||
self._bucket_in_progress = []
|
||||
|
||||
# fp16 and fp32 params for mixed precision training
|
||||
|
@ -321,7 +322,7 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
param_group = self._fp16_param_groups[group_id]
|
||||
for param in param_group:
|
||||
# we should not reduce the param in moe
|
||||
if param.requires_grad and not is_moe_param(param):
|
||||
if param.requires_grad:
|
||||
reduce_rank = None
|
||||
|
||||
def _define_and_attach(param, reduce_rank=None):
|
||||
|
@ -353,8 +354,13 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
# check if the bucket is full
|
||||
# if full, will reduce the grads already in the bucket
|
||||
# after reduction, the bucket will be empty
|
||||
if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
|
||||
self._reduce_grads_stored_in_bucket(reduce_rank, last_bucket=False)
|
||||
if is_moe_param(param):
|
||||
current_bucket = self._moe_bucket_store
|
||||
else:
|
||||
current_bucket = self._non_moe_bucket_store
|
||||
|
||||
if current_bucket.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
|
||||
self._reduce_grads_stored_in_bucket(current_bucket, reduce_rank, last_bucket=False)
|
||||
|
||||
# the param must not be reduced to ensure correctness
|
||||
is_param_reduced = self._param_store.is_param_reduced(param)
|
||||
|
@ -368,19 +374,20 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
# the param must have grad for reduction
|
||||
assert param.grad is not None, f"Parameter of size ({param.size()}) has None grad, cannot be reduced"
|
||||
|
||||
self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank)
|
||||
self._bucket_store.add_grad(param.grad, reduce_rank)
|
||||
self._bucket_store.add_param(param, reduce_rank)
|
||||
current_bucket.add_num_elements_in_bucket(param_size, reduce_rank)
|
||||
current_bucket.add_grad(param.grad, reduce_rank)
|
||||
current_bucket.add_param(param, reduce_rank)
|
||||
|
||||
def _reduce_grads_stored_in_bucket(self, reduce_rank=None, last_bucket=False):
|
||||
def _reduce_grads_stored_in_bucket(self, current_bucket, reduce_rank=None, last_bucket=False):
|
||||
# reduce grads
|
||||
self._reduce_grads_by_rank(
|
||||
reduce_rank=reduce_rank,
|
||||
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
|
||||
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank),
|
||||
grads=current_bucket.get_grad(reduce_rank=reduce_rank),
|
||||
bucket_size=current_bucket.num_elements_in_bucket(reduce_rank),
|
||||
dp_parallel_mode=current_bucket.get_dp_parallel_mode(),
|
||||
)
|
||||
|
||||
params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank)
|
||||
params_in_bucket = current_bucket.get_param(reduce_rank=reduce_rank)
|
||||
|
||||
for param in params_in_bucket:
|
||||
# the is_param_reduced flag should be False showing that
|
||||
|
@ -402,9 +409,9 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
else:
|
||||
self._param_store.add_previous_reduced_param(param)
|
||||
|
||||
self._bucket_store.reset_by_rank(reduce_rank)
|
||||
current_bucket.reset_by_rank(reduce_rank)
|
||||
|
||||
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size):
|
||||
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size, dp_parallel_mode):
|
||||
grad_buckets_by_dtype = split_half_float_double(grads)
|
||||
next_bucket_list = []
|
||||
# add parameters into bucket for reduction
|
||||
|
@ -413,7 +420,7 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
for tensor in tensor_list:
|
||||
param_bucket.add_to_bucket(tensor, allow_oversize=True)
|
||||
if not param_bucket.is_empty():
|
||||
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
|
||||
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank, dp_parallel_mode=dp_parallel_mode)
|
||||
next_bucket_list.append(param_bucket)
|
||||
|
||||
# wait for the completion of previouce bucket list reduction, and do unflatten_and_copy()
|
||||
|
@ -428,14 +435,14 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
# after the completion of bucket list reduction, add new buckets into _bucket_in_progress
|
||||
self._bucket_in_progress = next_bucket_list.copy()
|
||||
|
||||
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank):
|
||||
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank, dp_parallel_mode):
|
||||
# flatten the tensors and do allreduce
|
||||
bucket.flatten()
|
||||
bucket.commu_handle = reduce_tensor(
|
||||
tensor=bucket.get_flat_tensor(),
|
||||
dtype=None,
|
||||
dst_rank=reduce_rank,
|
||||
parallel_mode=ParallelMode.DATA,
|
||||
parallel_mode=dp_parallel_mode,
|
||||
)
|
||||
|
||||
# update the reduced tensor
|
||||
|
@ -581,11 +588,12 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
for group_id in range(len(self._fp16_param_groups)):
|
||||
for param in self._fp16_param_groups[group_id]:
|
||||
# we should not reduce the param in moe
|
||||
if param.grad is not None and not is_moe_param(param):
|
||||
if param.grad is not None:
|
||||
self._store_and_try_reduce_grads_by_bucket(param)
|
||||
|
||||
# we need to reduce the gradients left in the communication bucket
|
||||
self._reduce_grads_stored_in_bucket(reduce_rank=None, last_bucket=True)
|
||||
self._reduce_grads_stored_in_bucket(self._non_moe_bucket_store, reduce_rank=None, last_bucket=True)
|
||||
self._reduce_grads_stored_in_bucket(self._moe_bucket_store, reduce_rank=None, last_bucket=True)
|
||||
|
||||
# compute norm for gradients in the before bucket
|
||||
groups_norms = []
|
||||
|
|
|
@ -38,12 +38,16 @@ class BucketStore(BaseStore):
|
|||
self._grads = dict()
|
||||
self._params = dict()
|
||||
self._num_elements_in_bucket = dict()
|
||||
self._dp_parallel_mode = dp_parallel_mode
|
||||
|
||||
self.reset()
|
||||
|
||||
def num_elements_in_bucket(self, reduce_rank: int = None):
|
||||
return self._num_elements_in_bucket[reduce_rank]
|
||||
|
||||
def get_dp_parallel_mode(self):
|
||||
return self._dp_parallel_mode
|
||||
|
||||
def add_num_elements_in_bucket(self, num_elements, reduce_rank: int = None):
|
||||
self._num_elements_in_bucket[reduce_rank] += num_elements
|
||||
|
||||
|
|
|
@ -80,7 +80,7 @@ def initialize_model():
|
|||
# This sync is very important, cause the model weights kept in optimizer are copied
|
||||
# from the origin parameters in the memory, so we should make sure the dp sync
|
||||
# does not influence the model weights in optimizer be different with the origin parameters.
|
||||
sync_model_param(model, parallel_mode=ParallelMode.DATA)
|
||||
sync_model_param(model)
|
||||
|
||||
# This function is needed to make sure parameters that are not splitted by tensor parallelism are
|
||||
# the same across tensor parallelism.
|
||||
|
|
|
@ -258,7 +258,14 @@ def save_model_checkpoint(folder, model):
|
|||
llm_save(topo_fp, saved_obj=topo)
|
||||
|
||||
# try to save expert parameter to separate files if model have moe layer
|
||||
try_save_moe_checkpoint(folder, model, tp_rank, pp_rank)
|
||||
expert_dp_size = gpc.get_world_size(ParallelMode.EXPERT_DATA)
|
||||
expert_dp_rank = gpc.get_local_rank(ParallelMode.EXPERT_DATA)
|
||||
should_save_rank_pair.clear()
|
||||
for i in range(tp_size):
|
||||
should_save_rank_pair.add((i, i % expert_dp_size))
|
||||
|
||||
if (tp_rank, expert_dp_rank) in should_save_rank_pair:
|
||||
try_save_moe_checkpoint(folder, model, tp_rank, pp_rank)
|
||||
|
||||
torch.distributed.barrier()
|
||||
|
||||
|
|
|
@ -12,48 +12,23 @@ def is_model_parallel_parameter(p):
|
|||
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
|
||||
|
||||
|
||||
def sync_model_param(model, parallel_mode):
|
||||
def sync_model_param(model):
|
||||
r"""Make sure data parameters are consistent during Data Parallel Mode.
|
||||
|
||||
Args:
|
||||
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
|
||||
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
|
||||
"""
|
||||
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
|
||||
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
|
||||
sync_moe_param = (
|
||||
gpc.is_initialized(ParallelMode.EXPERT_DATA) and gpc.get_world_size(ParallelMode.EXPERT_DATA) > 1
|
||||
)
|
||||
for param in model.parameters():
|
||||
if is_moe_param(param):
|
||||
# TODO: moe expert param need to sync in expert data parallel group
|
||||
# now we do not support expert data parallel
|
||||
pass
|
||||
if sync_moe_param and is_moe_param(param):
|
||||
ranks = gpc.get_ranks_in_group(ParallelMode.EXPERT_DATA)
|
||||
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.EXPERT_DATA))
|
||||
else:
|
||||
ranks = gpc.get_ranks_in_group(parallel_mode)
|
||||
dist.broadcast(param, src=ranks[0], group=gpc.get_group(parallel_mode))
|
||||
|
||||
|
||||
def sync_tensor(tensor, parallel_mode):
|
||||
r"""Make sure data tensor(parameters) are consistent during Data and Expert Parallel Mode.
|
||||
|
||||
Args:
|
||||
tensor (:class:`torch.Tensor`): A parameters you check the consistency.
|
||||
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
|
||||
"""
|
||||
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
|
||||
ranks = gpc.get_ranks_in_group(parallel_mode)
|
||||
dist.broadcast(tensor, src=ranks[0], group=gpc.get_group(parallel_mode))
|
||||
|
||||
|
||||
# TODO: will be used in expert data parallel, may can also used in sync_model_param_within_tp
|
||||
def sync_model_param_with_ep(model):
|
||||
r"""Make sure data parameters are consistent during Data Parallel Mode.
|
||||
|
||||
Args:
|
||||
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
|
||||
"""
|
||||
for param in model.parameters():
|
||||
if is_moe_param(param):
|
||||
sync_tensor(param, ParallelMode.EXPERT_DATA)
|
||||
else:
|
||||
sync_tensor(param, ParallelMode.DATA)
|
||||
ranks = gpc.get_ranks_in_group(ParallelMode.DATA)
|
||||
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
|
||||
def sync_model_param_within_tp(model):
|
||||
|
|
Loading…
Reference in New Issue