feat(moe): add local data parallel support for experts (#376)

* add local data parallel support for experts

* fix model checkpoint for local dp mode of expert

* do not set ep size from config
pull/391/head
Wenwen Qu 2023-09-28 13:38:02 +08:00 committed by GitHub
parent c8242572f2
commit 375240e039
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 60 additions and 59 deletions

View File

@ -463,12 +463,19 @@ class ParallelContext(metaclass=SingletonMeta):
# the recommended nettest_parallel_size is 32 GPUs
self.nettest_parallel_size = 32
# TODO : data parallel size can be different with expert parallel size
self.expert_parallel_size = self.data_parallel_size
if self.zero1_parallel_size <= 0:
self.zero1_parallel_size = self.data_parallel_size
assert (
self.data_parallel_size % self.config.model.get("num_experts", 1) == 0
or self.config.model.get("num_experts", 1) % self.data_parallel_size == 0
), "can not place the experts evenly"
# by default, expert_parallel_size equals to data_parallel_size, but if the number of experts is smaller
# than data_parallel_size, set expert_parallel_size to be the number of experts to make sure each device
# has one expert.
self.expert_parallel_size = min(self.data_parallel_size, self.config.model.get("num_experts", 1))
self.check_sanity()
initializer_args = [
@ -492,7 +499,7 @@ class ParallelContext(metaclass=SingletonMeta):
if self.pipeline_parallel_size > 1:
initializers.append(pgroup_initializer.Initializer_Pipeline(*initializer_args))
if self.config.model.get("num_experts", 1) > 1:
initializers.append(pgroup_initializer.Initializer_Expert(*initializer_args))
initializers.append(pgroup_initializer.Initializer_Expert_Data(*initializer_args))
for initializer in initializers:
parallel_setting = initializer.init_dist_group()
if isinstance(parallel_setting, list):

View File

@ -125,7 +125,8 @@ class HybridZeroOptimizer(BaseOptimizer):
# it will not manage the tensors used by mixed precision training
self._param_store = ParameterStore(ParallelMode.ZERO1)
self._grad_store = GradientStore(ParallelMode.DATA)
self._bucket_store = BucketStore(ParallelMode.DATA)
self._non_moe_bucket_store = BucketStore(ParallelMode.DATA)
self._moe_bucket_store = BucketStore(ParallelMode.EXPERT_DATA)
self._bucket_in_progress = []
# fp16 and fp32 params for mixed precision training
@ -321,7 +322,7 @@ class HybridZeroOptimizer(BaseOptimizer):
param_group = self._fp16_param_groups[group_id]
for param in param_group:
# we should not reduce the param in moe
if param.requires_grad and not is_moe_param(param):
if param.requires_grad:
reduce_rank = None
def _define_and_attach(param, reduce_rank=None):
@ -353,8 +354,13 @@ class HybridZeroOptimizer(BaseOptimizer):
# check if the bucket is full
# if full, will reduce the grads already in the bucket
# after reduction, the bucket will be empty
if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
self._reduce_grads_stored_in_bucket(reduce_rank, last_bucket=False)
if is_moe_param(param):
current_bucket = self._moe_bucket_store
else:
current_bucket = self._non_moe_bucket_store
if current_bucket.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
self._reduce_grads_stored_in_bucket(current_bucket, reduce_rank, last_bucket=False)
# the param must not be reduced to ensure correctness
is_param_reduced = self._param_store.is_param_reduced(param)
@ -368,19 +374,20 @@ class HybridZeroOptimizer(BaseOptimizer):
# the param must have grad for reduction
assert param.grad is not None, f"Parameter of size ({param.size()}) has None grad, cannot be reduced"
self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank)
self._bucket_store.add_grad(param.grad, reduce_rank)
self._bucket_store.add_param(param, reduce_rank)
current_bucket.add_num_elements_in_bucket(param_size, reduce_rank)
current_bucket.add_grad(param.grad, reduce_rank)
current_bucket.add_param(param, reduce_rank)
def _reduce_grads_stored_in_bucket(self, reduce_rank=None, last_bucket=False):
def _reduce_grads_stored_in_bucket(self, current_bucket, reduce_rank=None, last_bucket=False):
# reduce grads
self._reduce_grads_by_rank(
reduce_rank=reduce_rank,
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank),
grads=current_bucket.get_grad(reduce_rank=reduce_rank),
bucket_size=current_bucket.num_elements_in_bucket(reduce_rank),
dp_parallel_mode=current_bucket.get_dp_parallel_mode(),
)
params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank)
params_in_bucket = current_bucket.get_param(reduce_rank=reduce_rank)
for param in params_in_bucket:
# the is_param_reduced flag should be False showing that
@ -402,9 +409,9 @@ class HybridZeroOptimizer(BaseOptimizer):
else:
self._param_store.add_previous_reduced_param(param)
self._bucket_store.reset_by_rank(reduce_rank)
current_bucket.reset_by_rank(reduce_rank)
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size):
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size, dp_parallel_mode):
grad_buckets_by_dtype = split_half_float_double(grads)
next_bucket_list = []
# add parameters into bucket for reduction
@ -413,7 +420,7 @@ class HybridZeroOptimizer(BaseOptimizer):
for tensor in tensor_list:
param_bucket.add_to_bucket(tensor, allow_oversize=True)
if not param_bucket.is_empty():
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank, dp_parallel_mode=dp_parallel_mode)
next_bucket_list.append(param_bucket)
# wait for the completion of previouce bucket list reduction, and do unflatten_and_copy()
@ -428,14 +435,14 @@ class HybridZeroOptimizer(BaseOptimizer):
# after the completion of bucket list reduction, add new buckets into _bucket_in_progress
self._bucket_in_progress = next_bucket_list.copy()
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank):
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank, dp_parallel_mode):
# flatten the tensors and do allreduce
bucket.flatten()
bucket.commu_handle = reduce_tensor(
tensor=bucket.get_flat_tensor(),
dtype=None,
dst_rank=reduce_rank,
parallel_mode=ParallelMode.DATA,
parallel_mode=dp_parallel_mode,
)
# update the reduced tensor
@ -581,11 +588,12 @@ class HybridZeroOptimizer(BaseOptimizer):
for group_id in range(len(self._fp16_param_groups)):
for param in self._fp16_param_groups[group_id]:
# we should not reduce the param in moe
if param.grad is not None and not is_moe_param(param):
if param.grad is not None:
self._store_and_try_reduce_grads_by_bucket(param)
# we need to reduce the gradients left in the communication bucket
self._reduce_grads_stored_in_bucket(reduce_rank=None, last_bucket=True)
self._reduce_grads_stored_in_bucket(self._non_moe_bucket_store, reduce_rank=None, last_bucket=True)
self._reduce_grads_stored_in_bucket(self._moe_bucket_store, reduce_rank=None, last_bucket=True)
# compute norm for gradients in the before bucket
groups_norms = []

View File

@ -38,12 +38,16 @@ class BucketStore(BaseStore):
self._grads = dict()
self._params = dict()
self._num_elements_in_bucket = dict()
self._dp_parallel_mode = dp_parallel_mode
self.reset()
def num_elements_in_bucket(self, reduce_rank: int = None):
return self._num_elements_in_bucket[reduce_rank]
def get_dp_parallel_mode(self):
return self._dp_parallel_mode
def add_num_elements_in_bucket(self, num_elements, reduce_rank: int = None):
self._num_elements_in_bucket[reduce_rank] += num_elements

View File

@ -80,7 +80,7 @@ def initialize_model():
# This sync is very important, cause the model weights kept in optimizer are copied
# from the origin parameters in the memory, so we should make sure the dp sync
# does not influence the model weights in optimizer be different with the origin parameters.
sync_model_param(model, parallel_mode=ParallelMode.DATA)
sync_model_param(model)
# This function is needed to make sure parameters that are not splitted by tensor parallelism are
# the same across tensor parallelism.

View File

@ -258,7 +258,14 @@ def save_model_checkpoint(folder, model):
llm_save(topo_fp, saved_obj=topo)
# try to save expert parameter to separate files if model have moe layer
try_save_moe_checkpoint(folder, model, tp_rank, pp_rank)
expert_dp_size = gpc.get_world_size(ParallelMode.EXPERT_DATA)
expert_dp_rank = gpc.get_local_rank(ParallelMode.EXPERT_DATA)
should_save_rank_pair.clear()
for i in range(tp_size):
should_save_rank_pair.add((i, i % expert_dp_size))
if (tp_rank, expert_dp_rank) in should_save_rank_pair:
try_save_moe_checkpoint(folder, model, tp_rank, pp_rank)
torch.distributed.barrier()

View File

@ -12,48 +12,23 @@ def is_model_parallel_parameter(p):
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
def sync_model_param(model, parallel_mode):
def sync_model_param(model):
r"""Make sure data parameters are consistent during Data Parallel Mode.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
"""
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
sync_moe_param = (
gpc.is_initialized(ParallelMode.EXPERT_DATA) and gpc.get_world_size(ParallelMode.EXPERT_DATA) > 1
)
for param in model.parameters():
if is_moe_param(param):
# TODO: moe expert param need to sync in expert data parallel group
# now we do not support expert data parallel
pass
if sync_moe_param and is_moe_param(param):
ranks = gpc.get_ranks_in_group(ParallelMode.EXPERT_DATA)
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.EXPERT_DATA))
else:
ranks = gpc.get_ranks_in_group(parallel_mode)
dist.broadcast(param, src=ranks[0], group=gpc.get_group(parallel_mode))
def sync_tensor(tensor, parallel_mode):
r"""Make sure data tensor(parameters) are consistent during Data and Expert Parallel Mode.
Args:
tensor (:class:`torch.Tensor`): A parameters you check the consistency.
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
"""
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
ranks = gpc.get_ranks_in_group(parallel_mode)
dist.broadcast(tensor, src=ranks[0], group=gpc.get_group(parallel_mode))
# TODO: will be used in expert data parallel, may can also used in sync_model_param_within_tp
def sync_model_param_with_ep(model):
r"""Make sure data parameters are consistent during Data Parallel Mode.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
"""
for param in model.parameters():
if is_moe_param(param):
sync_tensor(param, ParallelMode.EXPERT_DATA)
else:
sync_tensor(param, ParallelMode.DATA)
ranks = gpc.get_ranks_in_group(ParallelMode.DATA)
dist.broadcast(param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
def sync_model_param_within_tp(model):