Add stream_chat example

pull/467/head
x54-729 2023-11-02 22:05:09 +08:00
parent a61bbd84a2
commit 3418427083
3 changed files with 50 additions and 3 deletions

View File

@ -22,7 +22,6 @@
[🛠️インストール](./doc/en/install.md) |
[📊トレーニングパフォーマンス](./doc/en/train_performance.md) |
[👀モデル](#model-zoo) |
[🤗HuggingFace](https://huggingface.co/internlm) |
[🆕更新ニュース](./CHANGE_LOG.md) |
[🤔Issues 報告](https://github.com/InternLM/InternLM/issues/new)
@ -103,6 +102,22 @@ Transformers を使用して InternLM 7B チャットモデルをロードする
これらの提案を実践することで、時間管理のスキルを向上させ、効果的に日々のタスクをこなしていくことができます。
```
ストリーミング生成を行いたい場合は、「stream_chat」関数を使用できます。
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
```
### 対話
以下のコードを実行することで、フロントエンドインターフェースを通して InternLM Chat 7B モデルと対話することができます:

View File

@ -22,7 +22,7 @@
[🛠️安装教程](./doc/install.md) |
[📊训练性能](./doc/train_performance.md) |
[👀模型库](#model-zoo) |
[🤗HuggingFace](https://huggingface.co/internlm) |
[🤗HuggingFace](https://huggingface.co/spaces/internlm/InternLM-Chat-7B) |
[🆕Update News](./CHANGE_LOG.md) |
[🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
@ -178,6 +178,22 @@ InternLM-7B 包含了一个拥有70亿参数的基础模型和一个为实际场
3. 集中注意力:避免分心,集中注意力完成任务。关闭社交媒体和电子邮件通知,专注于任务,这将帮助您更快地完成任务,并减少错误的可能性。
```
如果想进行流式生成,则可以使用 `stream_chat` 接口:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
```
### 通过 ModelScope 加载
通过以下的代码从 ModelScope 加载 InternLM 模型 (可修改模型名称替换不同的模型)

View File

@ -22,7 +22,7 @@
[🛠Installation](./doc/en/install.md) |
[📊Train Performance](./doc/en/train_performance.md) |
[👀Model](#model-zoo) |
[🤗HuggingFace](https://huggingface.co/internlm) |
[🤗HuggingFace](https://huggingface.co/spaces/internlm/InternLM-Chat-7B) |
[🆕Update News](./CHANGE_LOG.md) |
[🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
@ -175,6 +175,22 @@ Sure, here are three tips for effective time management:
Remember, good time management skills take practice and patience. Start with small steps and gradually incorporate these habits into your daily routine.
```
The responses can be streamed using `stream_chat`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
```
### Import from ModelScope
To load the InternLM model using ModelScope, use the following code: