Test(pp): test pipeline parallel (#413)

* test: pp

* feat: add pp test

* test pp

* pp test

* pp test

* test pp
pull/424/head
jiaxingli 2023-10-18 17:53:08 +08:00 committed by GitHub
parent aa5e34d815
commit 30f610b1fa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 318 additions and 0 deletions

View File

@ -0,0 +1,318 @@
import multiprocessing as mp
import random
import numpy as np
import pytest
import torch
from torch import nn
from torch.testing import assert_close
import internlm
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.context.parallel_context import Config
from internlm.core.engine import Engine
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
from internlm.core.scheduler import (
InterleavedPipelineScheduler,
PipelineScheduler,
SchedulerMetricHook,
)
from internlm.solver.pipeline_utils import partition_uniform
from internlm.train import initialize_optimizer
class MlpModel(nn.Module):
"""
Custom model
"""
def __init__(self, start, end, model_type=None):
super().__init__()
self.part = [start, end]
self.blocks = nn.ModuleList([nn.Linear(8, 8, bias=False) for lid in range(end - start)])
self.model_type = model_type
def forward(self, hidden_states=None, input_ids=None):
if self.model_type != "torch" and self.part[0] != 0:
input_ids = hidden_states
for i in range(self.part[1] - self.part[0]):
input_ids = self.blocks[i](input_ids)
return input_ids
class MyLoss(nn.Module):
"""
Custom loss
"""
def __init__(self):
super().__init__()
def forward(self, logits, labels):
loss = torch.nn.MSELoss(reduction="sum")
return loss(logits, labels)
config = Config(
dict(
gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")],
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=False), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
dtype=torch.bfloat16,
num_chunks=2,
use_flash_attn=True,
),
resume_tb_folder="",
tensorboard_folder="",
alert_address=None,
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
grad_scaler=dict(
fp16=dict(
initial_scale=1,
min_scale=1,
growth_interval=1,
),
growth_factor=1.1,
backoff_factor=0.9,
max_scale=1,
hysteresis=1,
),
adam=dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
),
hybrid_zero_optimizer=dict(
overlap_sync_grad=False,
overlap_sync_param=False,
reduce_bucket_size=512 * 1024 * 1024,
clip_grad_norm=1.0,
),
beta2_scheduler=dict(
init_beta2=0.95,
c=0,
cur_iter=-1,
),
lr_scheduler=dict(
total_steps=100,
init_steps=0,
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
),
)
)
def build_environment(rank, world_size):
import os
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "33333"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
def loose_close(a, b, dtype: torch.dtype = torch.float32):
if dtype is torch.float32:
rtol = 1.3e-6
atol = 1e-5
elif dtype is torch.bfloat16:
rtol = 2e-2
atol = 2e-2
if isinstance(a, torch.Tensor):
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def _build_generic_model_1d(num_layers, num_chunks):
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
all_parts = partition_uniform(num_layers, pipeline_size, num_chunks)
parts = all_parts[pipeline_rank]
if gpc.is_rank_for_log():
print(f"The layer sharding is {all_parts}.", flush=True)
models = []
for start, end in parts:
models.append(MlpModel(start, end).cuda())
torch.distributed.barrier()
if len(models) == 1:
model = models[0]
else:
model = nn.ModuleList(models)
return model
def exam_pipeline_parallel(args):
# init
rank, world_size, micro_num, num_chunks, interleaved_overlap = args
config.data.micro_num = micro_num
config.model.num_chunks = num_chunks
config.parallel.pipeline.interleaved_overlap = interleaved_overlap
build_environment(rank, world_size)
device = torch.device(f"cuda:{rank}")
dtype = config.model["dtype"]
# set seed
seed_all(1024)
# pp model
pp_model = _build_generic_model_1d(num_layers=32, num_chunks=num_chunks)
pp_model = pp_model.to(dtype)
# pp scheduler
scheduler_hooks = [
SchedulerMetricHook(skip=True),
]
seq_len = gpc.config.data.seq_len
gpc.config.NUM_MICRO_BATCHES = micro_num
communication_overlap = interleaved_overlap
if num_chunks == 1:
# noninterleaved pp
scheduler = PipelineScheduler(
data_process_func=None,
num_microbatches=micro_num,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
)
else:
# interleaved pp
if micro_num < gpc.get_world_size(ParallelMode.PIPELINE):
try:
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
except AssertionError:
return
else:
raise RuntimeError("Error: AssertionError should occur when micro_num < Pipeline parrallel world size")
else:
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
# pp optimizer and engine
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
engine = Engine(
model=pp_model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
beta2_scheduler=beta2_scheduler,
criterion=MyLoss().to(dtype),
gradient_handlers=[PipelineSharedModuleGradientHandler(model=pp_model, optimizer=optimizer)],
clip_grad_norm=gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0),
)
scheduler.pre_processing(engine)
engine.train()
# create input
x_list = []
y_list = []
for _ in range(micro_num):
x_list.append(list(range(seq_len)))
y_list.append(list(range(seq_len)))
xs = torch.tensor(x_list).to(device).to(dtype)
yx = torch.tensor(y_list).to(device).to(dtype)
input_list = [{"input_ids": xs}, yx]
# pp forward and backward
output, _, loss = scheduler.forward_backward_step(
engine, input_list, forward_only=False, return_loss=True, return_output_label=True
)
engine.step()
# torch related
if gpc.is_last_rank(ParallelMode.PIPELINE):
torch_xs = torch.tensor(x_list).to(device).to(torch.float32)
torch_ys = torch.tensor(y_list).to(device).to(torch.float32)
torch_model = MlpModel(0, 32, "torch").to(device)
torch_optimizer = torch.optim.AdamW(
params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}],
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
# check output
torch_output = torch_model(input_ids=torch_xs) # pylint: disable=E1102
loose_close(torch_output, output, dtype=dtype)
torch_criterion = MyLoss().to(torch.float32)
torch_loss = torch_criterion(torch_output, torch_ys) / micro_num # pylint: disable=E1102
torch_loss.backward()
torch_optimizer.step()
# check loss
loose_close(torch_loss, loss[0], dtype=dtype)
@pytest.mark.parametrize("micro_num", [4, 8, 16])
@pytest.mark.parametrize("num_chunks", [1, 2, 4])
@pytest.mark.parametrize("interleaved_overlap", [True, False])
def test_pipeline_parallel(micro_num, num_chunks, interleaved_overlap):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(
exam_pipeline_parallel,
[[rank, 8, micro_num, num_chunks, interleaved_overlap] for rank in range(8)],
)
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_pipeline.py"])