mirror of https://github.com/InternLM/InternLM
test: pp
parent
ab513e1ddd
commit
3034e73c42
|
@ -0,0 +1,249 @@
|
|||
import copy
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
|
||||
import internlm
|
||||
from internlm.core.context.parallel_context import Config
|
||||
from internlm.core.trainer import Trainer
|
||||
|
||||
from internlm.core.scheduler import (
|
||||
InterleavedPipelineScheduler,
|
||||
NonPipelineScheduler,
|
||||
PipelineScheduler,
|
||||
SchedulerHook,
|
||||
)
|
||||
from internlm.data.utils import unpack_data
|
||||
from internlm.core.scheduler.pipeline_scheduler import get_tensor_shape
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.scheduler import SchedulerMetricHook
|
||||
from internlm.model.metrics import AccPerplex
|
||||
from internlm.train import (
|
||||
get_train_data_loader,
|
||||
get_validation_data_loader,
|
||||
initialize_llm_profile,
|
||||
initialize_model,
|
||||
initialize_optimizer,
|
||||
load_new_batch,
|
||||
record_current_batch_training_metrics,
|
||||
)
|
||||
from internlm.core.engine import Engine
|
||||
from internlm.model.loss import FlashGPTLMLoss
|
||||
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
|
||||
from internlm.core.trainer import TrainState
|
||||
|
||||
|
||||
class MlpModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(MlpModel, self).__init__()
|
||||
self.linear1 = nn.Linear(4, 8)
|
||||
self.linear2 = nn.Linear(8, 8)
|
||||
self.linear3 = nn.Linear(8, 8)
|
||||
self.linear4 = nn.Linear(8, 4)
|
||||
|
||||
def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None):
|
||||
print('MLP:', input_ids, input_ids.dtype, flush=True)
|
||||
input_ids = self.linear1(input_ids)
|
||||
input_ids = self.linear2(input_ids)
|
||||
input_ids = self.linear3(input_ids)
|
||||
input_ids = self.linear4(input_ids)
|
||||
return input_ids
|
||||
|
||||
config = Config(
|
||||
dict(
|
||||
parallel=dict(zero1=1, pipeline=dict(size=2, interleaved_overlap=False), sequence_parallel=False, tensor=1),
|
||||
model_type="INTERNLM",
|
||||
data=dict(seq_len=2048, micro_num=1, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
|
||||
model=dict(
|
||||
dtype=torch.bfloat16,
|
||||
),
|
||||
resume_tb_folder="",
|
||||
tensorboard_folder="",
|
||||
alert_address=None,
|
||||
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
|
||||
grad_scaler=dict(
|
||||
fp16=dict(
|
||||
initial_scale=1,
|
||||
min_scale=1,
|
||||
growth_interval=1,
|
||||
),
|
||||
growth_factor=1.1,
|
||||
backoff_factor=0.9,
|
||||
max_scale=1,
|
||||
hysteresis=1,
|
||||
),
|
||||
adam=dict(
|
||||
lr=1e-4,
|
||||
adam_beta1=0.9,
|
||||
adam_beta2=0.95,
|
||||
adam_beta2_c=0,
|
||||
adam_eps=1e-8,
|
||||
weight_decay=0.01,
|
||||
),
|
||||
hybrid_zero_optimizer=dict(
|
||||
overlap_sync_grad=False,
|
||||
overlap_sync_param=False,
|
||||
reduce_bucket_size=512 * 1024 * 1024,
|
||||
clip_grad_norm=1.0,
|
||||
),
|
||||
beta2_scheduler = dict(
|
||||
init_beta2=0.95,
|
||||
c=0,
|
||||
cur_iter=-1,
|
||||
),
|
||||
lr_scheduler = dict(
|
||||
total_steps=100,
|
||||
init_steps=0, # optimizer_warmup_step
|
||||
warmup_ratio=0.01,
|
||||
eta_min=1e-5,
|
||||
last_epoch=-1,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def build_environment(rank, world_size):
|
||||
import os
|
||||
|
||||
os.environ["RANK"] = str(rank)
|
||||
os.environ["LOCAL_RANK"] = str(rank)
|
||||
os.environ["WORLD_SIZE"] = str(world_size)
|
||||
os.environ["MASTER_ADDR"] = "127.0.0.1"
|
||||
os.environ["MASTER_PORT"] = "12345"
|
||||
torch.cuda.empty_cache()
|
||||
# launcher="torch"
|
||||
internlm.launch_from_torch(config=config, seed=1024)
|
||||
|
||||
|
||||
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
||||
|
||||
if dtype is torch.float32:
|
||||
rtol = 1.3e-6
|
||||
atol = 1e-5
|
||||
elif dtype is torch.bfloat16:
|
||||
rtol = 2e-2
|
||||
atol = 2e-2
|
||||
|
||||
if isinstance(a, torch.Tensor):
|
||||
a = a.detach().to(dtype)
|
||||
b = b.detach().to(dtype)
|
||||
|
||||
assert_close(a, b, rtol=rtol, atol=atol)
|
||||
|
||||
def seed_all(seed, cuda_deterministic=False):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
if cuda_deterministic: # slower, more reproducible
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
else:
|
||||
torch.backends.cudnn.deterministic = False
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
|
||||
|
||||
def exam_pipeline_parallel(args):
|
||||
rank, world_size = args
|
||||
dtype = torch.bfloat16
|
||||
|
||||
build_environment(rank, world_size)
|
||||
seed_all(1024)
|
||||
|
||||
torch_model = MlpModel().cuda()
|
||||
pp_model = copy.deepcopy(torch_model).to(dtype)
|
||||
|
||||
|
||||
tensor_shape = get_tensor_shape()
|
||||
|
||||
scatter_gather = gpc.is_initialized(ParallelMode.TENSOR)
|
||||
|
||||
if gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
print(rank, 'is first pp')
|
||||
|
||||
|
||||
|
||||
scheduler_hooks = [
|
||||
SchedulerMetricHook(
|
||||
skip=False
|
||||
),
|
||||
]
|
||||
|
||||
scheduler = PipelineScheduler(
|
||||
data_process_func=None,
|
||||
num_microbatches=gpc.config.data.micro_num,
|
||||
dtype=gpc.config.model["dtype"],
|
||||
tensor_shape=tensor_shape,
|
||||
scatter_gather_tensors=scatter_gather,
|
||||
scheduler_hooks=scheduler_hooks,
|
||||
)
|
||||
|
||||
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
|
||||
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=0)
|
||||
|
||||
engine = Engine(
|
||||
model=pp_model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
beta2_scheduler=beta2_scheduler,
|
||||
criterion=criterion,
|
||||
gradient_handlers=[],
|
||||
clip_grad_norm=gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0),
|
||||
)
|
||||
|
||||
scheduler.pre_processing(engine)
|
||||
engine.train()
|
||||
engine.zero_grad()
|
||||
|
||||
input_list = [{'input_ids':torch.tensor([[0,1,2,3]]).cuda().to(dtype)},
|
||||
torch.tensor([[1]]).cuda().to(torch.int64)]
|
||||
torch_input = torch.tensor([[0,1,2,3]]).cuda().to(torch.float32)
|
||||
torch_label = torch.tensor([[1]]).cuda().to(torch.int64)
|
||||
# print('label_shape:', input_list[1].shape)
|
||||
# input_list = [{'input_ids':torch.rand(1, 4).cuda()}, torch.rand(1, 4).cuda()]
|
||||
# input = input_list[0]
|
||||
# print(input)
|
||||
# output = torch_model(input)
|
||||
# print(output)
|
||||
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'start schedule')
|
||||
_, _, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=False)
|
||||
engine.step()
|
||||
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'end schedule')
|
||||
torch_output = torch_model(input_ids=torch_input)
|
||||
torch_loss = criterion(torch_output, torch_label).unsqueeze(0)
|
||||
|
||||
# if rank == 0:
|
||||
# print('loss:', loss)
|
||||
# print('torch_loss:', torch_loss)
|
||||
#loose_close(loss, torch_loss, dtype=dtype)
|
||||
torch_loss.backward()
|
||||
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'everything3')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def test_pipeline_parallel():
|
||||
ctx = mp.get_context("spawn")
|
||||
with ctx.Pool(processes=8) as pool:
|
||||
pool.map(
|
||||
exam_pipeline_parallel,
|
||||
[[rank, 8] for rank in range(8)],
|
||||
)
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main(["-s", "-q", "test_pipeline.py"])
|
Loading…
Reference in New Issue