mirror of https://github.com/InternLM/InternLM
refactor code
parent
5d39c332fe
commit
29df765f65
|
@ -202,8 +202,10 @@ class NonPipelineScheduler(BaseScheduler):
|
|||
if return_output_label:
|
||||
outputs.append(_output)
|
||||
labels.append(_label)
|
||||
|
||||
if not return_output_label:
|
||||
outputs, labels = None, None
|
||||
|
||||
# Compatible for non-moe
|
||||
if hasattr(gpc.config.model, "num_experts"):
|
||||
return outputs, labels, loss, moe_loss
|
||||
|
|
|
@ -6,17 +6,13 @@ from typing import Optional
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
||||
from flash_attn.utils.distributed import all_reduce, reduce_scatter, all_gather_raw, reduce_scatter_raw
|
||||
from torch import Tensor
|
||||
from flash_attn.utils.distributed import all_reduce, reduce_scatter
|
||||
from torch import nn
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
# import fused_dense_cuda # from apex
|
||||
import fused_dense_lib as fused_dense_cuda
|
||||
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.utils import Silu, fused_dense_func_torch
|
||||
from internlm.model.utils import Silu, fused_dense_func_torch, fsdp_fused_dense_func
|
||||
|
||||
|
||||
class ScaleColumnParallelLinear(nn.Linear):
|
||||
|
@ -208,116 +204,6 @@ class FeedForward(nn.Module):
|
|||
out = self.w3(Silu(w1_o, w2_o))
|
||||
return out
|
||||
|
||||
class FSDPFusedDenseFunc(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
|
||||
|
||||
ctx.compute_weight_gradient = weight.requires_grad
|
||||
ctx.return_residual = return_residual
|
||||
ctx.process_group = process_group
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
total_x = x.contiguous()
|
||||
|
||||
world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
if world_size > 1:
|
||||
# do all_gather for weight and bias before actual computation
|
||||
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
if bias is not None:
|
||||
total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True)
|
||||
handle_bias.wait()
|
||||
else:
|
||||
total_bias = bias
|
||||
handle_weight.wait()
|
||||
else:
|
||||
total_weight = weight
|
||||
total_bias = bias
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
total_weight = total_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
total_bias = total_bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
||||
|
||||
total_weight = total_weight.contiguous()
|
||||
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
||||
if min(batch_dim, n, *total_weight.shape) > 65535 * 32:
|
||||
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
|
||||
output = F.linear(total_x, total_weight, total_bias)
|
||||
if ctx.compute_weight_gradient:
|
||||
ctx.save_for_backward(x, weight)
|
||||
else:
|
||||
ctx.save_for_backward(weight)
|
||||
return output if not return_residual else (output, x)
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output, *args):
|
||||
grad_output = grad_output.contiguous()
|
||||
if ctx.return_residual:
|
||||
grad_input, = args
|
||||
grad_input = grad_input.contiguous()
|
||||
process_group = ctx.process_group
|
||||
if ctx.compute_weight_gradient:
|
||||
x, weight = ctx.saved_tensors
|
||||
total_x = x
|
||||
else:
|
||||
weight, = ctx.saved_tensors
|
||||
total_x = None
|
||||
batch_shape = grad_output.shape[:-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
||||
|
||||
world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
if world_size > 1:
|
||||
# do all-gather for weight before backward
|
||||
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
handle_weight.wait()
|
||||
else:
|
||||
total_weight = weight
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
if not ctx.return_residual:
|
||||
grad_input = F.linear(grad_output, total_weight.t())
|
||||
else:
|
||||
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
|
||||
grad_output, total_weight)
|
||||
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
||||
else:
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[1]:
|
||||
assert ctx.compute_weight_gradient
|
||||
|
||||
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
|
||||
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
|
||||
)
|
||||
if world_size > 1:
|
||||
grad_weight, handle_grad_weight = reduce_scatter_raw(grad_weight, process_group, async_op=True)
|
||||
if grad_bias is not None:
|
||||
grad_bias, handle_grad_bias = reduce_scatter_raw(grad_bias, process_group, async_op=True)
|
||||
handle_grad_bias.wait()
|
||||
handle_grad_weight.wait()
|
||||
else:
|
||||
grad_weight = None
|
||||
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def fsdp_fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
|
||||
return_residual: bool = False, process_group = None):
|
||||
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
|
||||
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
|
||||
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
||||
return FSDPFusedDenseFunc.apply(x, weight, bias, return_residual, process_group)
|
||||
else:
|
||||
assert process_group is None
|
||||
out = F.linear(x, weight, bias)
|
||||
return out if not return_residual else (out, x)
|
||||
|
||||
class FSDPLinear(ColumnParallelLinear):
|
||||
|
||||
def forward(self, x):
|
||||
|
|
|
@ -5,9 +5,7 @@ from typing import Optional
|
|||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
# from flash_attn.ops.fused_dense import FusedDenseFunc
|
||||
from flash_attn.utils.distributed import (
|
||||
# all_gather_raw,
|
||||
all_reduce_raw,
|
||||
reduce_scatter_raw,
|
||||
)
|
||||
|
@ -17,6 +15,7 @@ from torch.distributed import ProcessGroup
|
|||
|
||||
import fused_dense_lib as fused_dense_cuda
|
||||
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.utils.logger import get_logger
|
||||
|
||||
|
@ -90,23 +89,53 @@ def gather_forward_split_backward(input_, parallel_mode, dim):
|
|||
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
|
||||
|
||||
|
||||
class _SplitForwardGatherBackward(torch.autograd.Function):
|
||||
"""
|
||||
Split the input and keep only the corresponding chuck to the rank.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(input_):
|
||||
return _split(input_, parallel_mode=None)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode, dim):
|
||||
ctx.mode = parallel_mode
|
||||
ctx.dim = dim
|
||||
return _split(input_, parallel_mode, dim)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return _gather(grad_output, ctx.mode, ctx.dim), None, None
|
||||
|
||||
|
||||
def split_forward_gather_backward(input_, parallel_mode, dim):
|
||||
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
|
||||
|
||||
|
||||
def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False, gather_dim: int = 0):
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
shape = list(input_.shape)
|
||||
shape[gather_dim] = shape[gather_dim] * world_size
|
||||
output = torch.empty(shape, dtype=input_.dtype, device=input_.device)
|
||||
handle = torch.distributed.all_gather_into_tensor(output, input_.contiguous(),
|
||||
group=process_group, async_op=async_op)
|
||||
return output, handle
|
||||
|
||||
|
||||
def linear_bias_wgrad_torch(my_input, grad_output, has_d_bias):
|
||||
assert my_input.dtype == grad_output.dtype
|
||||
grad_weight = torch.matmul(grad_output.t(), my_input)
|
||||
grad_bias = grad_output.sum(dim=0) if has_d_bias else None
|
||||
return grad_weight, grad_bias
|
||||
|
||||
def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False, gather_dim: int = 0):
|
||||
world_size = torch.distributed.get_world_size(process_group)
|
||||
shape = list(input_.shape)
|
||||
shape[gather_dim] = shape[gather_dim] * world_size
|
||||
# output = torch.empty(world_size * input_.shape[0], *input_.shape[1:],
|
||||
# dtype=input_.dtype, device=input_.device)
|
||||
output = torch.empty(shape, dtype=input_.dtype, device=input_.device)
|
||||
handle = torch.distributed.all_gather_into_tensor(output, input_.contiguous(),
|
||||
group=process_group, async_op=async_op)
|
||||
return output, handle
|
||||
|
||||
# adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py
|
||||
class FusedDenseFunc(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
|
@ -253,6 +282,105 @@ class FusedDenseFuncTorch(FusedDenseFunc):
|
|||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
|
||||
|
||||
class FSDPFusedDenseFunc(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
|
||||
|
||||
ctx.compute_weight_gradient = weight.requires_grad
|
||||
ctx.return_residual = return_residual
|
||||
ctx.process_group = process_group
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
total_x = x.contiguous()
|
||||
|
||||
world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
if world_size > 1:
|
||||
# do all_gather for weight and bias before actual computation
|
||||
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
if bias is not None:
|
||||
total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True)
|
||||
handle_bias.wait()
|
||||
else:
|
||||
total_bias = bias
|
||||
handle_weight.wait()
|
||||
else:
|
||||
total_weight = weight
|
||||
total_bias = bias
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
total_weight = total_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
total_bias = total_bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
||||
|
||||
total_weight = total_weight.contiguous()
|
||||
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
||||
if min(batch_dim, n, *total_weight.shape) > 65535 * 32:
|
||||
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
|
||||
output = F.linear(total_x, total_weight, total_bias)
|
||||
if ctx.compute_weight_gradient:
|
||||
ctx.save_for_backward(x, weight)
|
||||
else:
|
||||
ctx.save_for_backward(weight)
|
||||
return output if not return_residual else (output, x)
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output, *args):
|
||||
grad_output = grad_output.contiguous()
|
||||
if ctx.return_residual:
|
||||
grad_input, = args
|
||||
grad_input = grad_input.contiguous()
|
||||
process_group = ctx.process_group
|
||||
if ctx.compute_weight_gradient:
|
||||
x, weight = ctx.saved_tensors
|
||||
total_x = x
|
||||
else:
|
||||
weight, = ctx.saved_tensors
|
||||
total_x = None
|
||||
batch_shape = grad_output.shape[:-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
||||
|
||||
world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
if world_size > 1:
|
||||
# do all-gather for weight before backward
|
||||
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
handle_weight.wait()
|
||||
else:
|
||||
total_weight = weight
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
if not ctx.return_residual:
|
||||
grad_input = F.linear(grad_output, total_weight.t())
|
||||
else:
|
||||
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
|
||||
grad_output, total_weight)
|
||||
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
||||
else:
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[1]:
|
||||
assert ctx.compute_weight_gradient
|
||||
|
||||
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
|
||||
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
|
||||
)
|
||||
if world_size > 1:
|
||||
grad_weight, handle_grad_weight = reduce_scatter_raw(grad_weight, process_group, async_op=True)
|
||||
if grad_bias is not None:
|
||||
grad_bias, handle_grad_bias = reduce_scatter_raw(grad_bias, process_group, async_op=True)
|
||||
handle_grad_bias.wait()
|
||||
handle_grad_weight.wait()
|
||||
else:
|
||||
grad_weight = None
|
||||
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def fused_dense_func_torch(
|
||||
x: Tensor,
|
||||
weight: Tensor,
|
||||
|
@ -271,33 +399,16 @@ def fused_dense_func_torch(
|
|||
return FusedDenseFuncTorch.apply(x, weight, bias, return_residual, process_group, sequence_parallel, gather_dim)
|
||||
|
||||
|
||||
class _SplitForwardGatherBackward(torch.autograd.Function):
|
||||
"""
|
||||
Split the input and keep only the corresponding chuck to the rank.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(input_):
|
||||
return _split(input_, parallel_mode=None)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode, dim):
|
||||
ctx.mode = parallel_mode
|
||||
ctx.dim = dim
|
||||
return _split(input_, parallel_mode, dim)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return _gather(grad_output, ctx.mode, ctx.dim), None, None
|
||||
|
||||
|
||||
def split_forward_gather_backward(input_, parallel_mode, dim):
|
||||
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
|
||||
def fsdp_fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
|
||||
return_residual: bool = False, process_group = None):
|
||||
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
|
||||
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
|
||||
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
||||
return FSDPFusedDenseFunc.apply(x, weight, bias, return_residual, process_group)
|
||||
else:
|
||||
assert process_group is None
|
||||
out = F.linear(x, weight, bias)
|
||||
return out if not return_residual else (out, x)
|
||||
|
||||
|
||||
def try_import_RMSNorm():
|
||||
|
|
Loading…
Reference in New Issue