diff --git a/ecosystem/README.md b/ecosystem/README.md index 4a5ce7b..888c22f 100644 --- a/ecosystem/README.md +++ b/ecosystem/README.md @@ -34,7 +34,7 @@ SWIFT supports training, inference, evaluation and deployment of LLMs and MLLMs LMDeploy is an efficient toolkit for compressing, deploying, and serving LLMs and VLMs. -With only 4 lines of codes, you can perform `internlm2-chat-7b` inference after `pip install lmdeploy`: +With only 4 lines of code, you can perform `internlm2-chat-7b` inference after `pip install lmdeploy`: ```python from lmdeploy import pipeline @@ -141,7 +141,7 @@ llamafile lets you turn large language model (LLM) weights into executables. It The best practice of deploying InternLM2 using llamafile is shown as below: - Convert the internlm2 model into GGUF model by `llama.cpp`. Suppose we get `internlm2-chat-7b.gguf` in this step -- create the llamafile +- Create the llamafile ```shell wget https://github.com/Mozilla-Ocho/llamafile/releases/download/0.8.6/llamafile-0.8.6.zip @@ -157,7 +157,7 @@ internlm2-chat-7b.gguf 999 ..." > .args -zipalign -j0 \ +llamafile-0.8.6/bin/zipalign -j0 \ internlm2.llamafile \ internlm2-chat-7b.gguf \ .args diff --git a/ecosystem/README_zh-CN.md b/ecosystem/README_zh-CN.md index de2f30b..7dc0707 100644 --- a/ecosystem/README_zh-CN.md +++ b/ecosystem/README_zh-CN.md @@ -161,7 +161,7 @@ internlm2-chat-7b.gguf 999 ..." > .args -zipalign -j0 \ +llamafile-0.8.6/bin/zipalign -j0 \ internlm2.llamafile \ internlm2-chat-7b.gguf \ .args