fix failure in lint-check

pull/293/head
zaglc 2023-09-08 13:19:42 +08:00
parent 31d2a2916d
commit 1d60f90ed9
4 changed files with 26 additions and 41 deletions

View File

@ -421,7 +421,6 @@ class Initializer_Zero3_dp(ProcessGroupInitializer):
assert self.world_size % self.data_parallel_size == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.

View File

@ -90,11 +90,11 @@ class FSDPadaptOptimizer(BaseOptimizer):
'''
def __init__(
self,
optimizer: Optimizer,
grad_scal_cfg: Config = None,
zero_cfg: Config = None,
):
self,
optimizer: Optimizer,
grad_scal_cfg: Config = None,
zero_cfg: Config = None,
):
super().__init__(optim=optimizer)
# gradient scaler
@ -113,7 +113,7 @@ class FSDPadaptOptimizer(BaseOptimizer):
self.use_fsdp = gpc.config.parallel.use_fsdp
# mark whether a module is part of TP or not
is_tensor_parallel_dict = dict()
# TODO: is_tensor_parallel_dict = dict()
# fp16 and fp32 params
# fp16 share mem space with model.FlatParam, fp32 share mem space with optim.param_group
@ -221,7 +221,6 @@ class FSDPadaptOptimizer(BaseOptimizer):
global_norm_groups[group_name] = global_norm / loss_scale
return True, global_norm_groups
def clip_grad_norm(self, model, max_norm):
# will conduct in the step()
pass

View File

@ -42,18 +42,11 @@ from internlm.utils.registry import MODEL_INITIALIZER
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
BackwardPrefetch,
ShardingStrategy,
MixedPrecision,
BackwardPrefetch,
)
from torch.distributed.fsdp.wrap import (
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
import functools
from internlm.model.modeling_internlm import PackedFlashBaseLayer1D, PackedFlashInternLm1D
@ -107,11 +100,8 @@ def warp_FSDP_model(model: Union[nn.Module, nn.ModuleList]):
if gpc.config.parallel.use_fsdp:
transformer_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls = {PackedFlashBaseLayer1D, PackedFlashInternLm1D}
transformer_layer_cls={PackedFlashBaseLayer1D, PackedFlashInternLm1D}
)
mx = MixedPrecision(
param_dtype=gpc.config.model.dtype, reduce_dtype=gpc.config.model.dtype,
buffer_dtype=gpc.config.model.dtype, keep_low_precision_grads=True)
grp = gpc.get_group(ParallelMode.ZERO1)
model = FSDP(module=model,
process_group=grp,
@ -119,10 +109,7 @@ def warp_FSDP_model(model: Union[nn.Module, nn.ModuleList]):
auto_wrap_policy=transformer_wrap_policy,
forward_prefetch=True,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
#cpu_offload=CPUOfload(offload_params=True)
#mixed_precision=mx,
#device_id=torch.cuda.current_device()
)
)
return model

View File

@ -64,7 +64,7 @@ def get_state_dict(model):
"""
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import FullStateDictConfig, StateDictType# , FullOptimStateDictConfig
from torch.distributed.fsdp import FullStateDictConfig, StateDictType
# TODO: rank0_only can save memory for non-rank0 gpu, but when tp is enabled, model saving will left some parameters
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=False)