mirror of https://github.com/InternLM/InternLM
add test
parent
5abe519c4c
commit
16ef7b7889
|
@ -0,0 +1,180 @@
|
||||||
|
JOB_NAME = "13b_train"
|
||||||
|
DO_ALERT = False
|
||||||
|
|
||||||
|
SEQ_LEN = 4096
|
||||||
|
HIDDEN_SIZE = 5120
|
||||||
|
NUM_ATTENTION_HEAD = 40
|
||||||
|
MLP_RATIO = 8 / 3
|
||||||
|
NUM_LAYER = 40
|
||||||
|
VOCAB_SIZE = 103168
|
||||||
|
|
||||||
|
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||||
|
# Ckpt folder format:
|
||||||
|
# fs: 'local:/mnt/nfs/XXX'
|
||||||
|
SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||||||
|
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
|
||||||
|
|
||||||
|
# boto3 Ckpt folder format:
|
||||||
|
# import os
|
||||||
|
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
|
||||||
|
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
|
||||||
|
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
|
||||||
|
CHECKPOINT_EVERY = 50
|
||||||
|
ckpt = dict(
|
||||||
|
enable_save_ckpt=False, # enable ckpt save.
|
||||||
|
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
||||||
|
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
|
||||||
|
load_ckpt_folder="local:llm_ckpts/",
|
||||||
|
# 'load_ckpt_info' setting guide:
|
||||||
|
# 1. the 'path' indicate ckpt path,
|
||||||
|
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||||||
|
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
||||||
|
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||||||
|
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
|
||||||
|
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
|
||||||
|
# with an automatic restart mechanism upon training reboot.
|
||||||
|
# Please be aware that if `auto_resume` is not set (its default value is True), it will not load the checkpoint
|
||||||
|
# path specified in `load_ckpt_info` by default.
|
||||||
|
# If you want to initialize your model weights from another model, you must set `auto_resume` to False.
|
||||||
|
# If you want to train from scratch, please set `auto_resume` to False and 'load_ckpt_info' to None.
|
||||||
|
auto_resume=True,
|
||||||
|
checkpoint_every=CHECKPOINT_EVERY,
|
||||||
|
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
||||||
|
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
||||||
|
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
||||||
|
)
|
||||||
|
|
||||||
|
TRAIN_FOLDER = "/path/to/dataset"
|
||||||
|
VALID_FOLDER = "/path/to/dataset"
|
||||||
|
data = dict(
|
||||||
|
seq_len=SEQ_LEN,
|
||||||
|
# micro_num means the number of micro_batch contained in one gradient update
|
||||||
|
micro_num=4,
|
||||||
|
# packed_length = micro_bsz * SEQ_LEN
|
||||||
|
micro_bsz=2,
|
||||||
|
# defaults to the value of micro_num
|
||||||
|
valid_micro_num=4,
|
||||||
|
# defaults to 0, means disable evaluate
|
||||||
|
valid_every=50,
|
||||||
|
pack_sample_into_one=False,
|
||||||
|
total_steps=20,
|
||||||
|
skip_batches="",
|
||||||
|
rampup_batch_size="",
|
||||||
|
# Datasets with less than 50 rows will be discarded
|
||||||
|
min_length=50,
|
||||||
|
# train_folder=TRAIN_FOLDER,
|
||||||
|
# valid_folder=VALID_FOLDER,
|
||||||
|
empty_cache_and_diag_interval=10,
|
||||||
|
diag_outlier_ratio=1.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
grad_scaler = dict(
|
||||||
|
fp16=dict(
|
||||||
|
# the initial loss scale, defaults to 2**16
|
||||||
|
initial_scale=2**16,
|
||||||
|
# the minimum loss scale, defaults to None
|
||||||
|
min_scale=1,
|
||||||
|
# the number of steps to increase loss scale when no overflow occurs
|
||||||
|
growth_interval=1000,
|
||||||
|
),
|
||||||
|
# the multiplication factor for increasing loss scale, defaults to 2
|
||||||
|
growth_factor=2,
|
||||||
|
# the multiplication factor for decreasing loss scale, defaults to 0.5
|
||||||
|
backoff_factor=0.5,
|
||||||
|
# the maximum loss scale, defaults to None
|
||||||
|
max_scale=2**24,
|
||||||
|
# the number of overflows before decreasing loss scale, defaults to 2
|
||||||
|
hysteresis=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
hybrid_zero_optimizer = dict(
|
||||||
|
# Enable low_level_optimzer overlap_communication
|
||||||
|
overlap_sync_grad=True,
|
||||||
|
overlap_sync_param=True,
|
||||||
|
# bucket size for nccl communication params
|
||||||
|
reduce_bucket_size=512 * 1024 * 1024,
|
||||||
|
# grad clipping
|
||||||
|
clip_grad_norm=1.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = dict(
|
||||||
|
label_smoothing=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
adam = dict(
|
||||||
|
lr=1e-4,
|
||||||
|
adam_beta1=0.9,
|
||||||
|
adam_beta2=0.95,
|
||||||
|
adam_beta2_c=0,
|
||||||
|
adam_eps=1e-8,
|
||||||
|
weight_decay=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
lr_scheduler = dict(
|
||||||
|
total_steps=data["total_steps"],
|
||||||
|
init_steps=0, # optimizer_warmup_step
|
||||||
|
warmup_ratio=0.01,
|
||||||
|
eta_min=1e-5,
|
||||||
|
last_epoch=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
beta2_scheduler = dict(
|
||||||
|
init_beta2=adam["adam_beta2"],
|
||||||
|
c=adam["adam_beta2_c"],
|
||||||
|
cur_iter=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
|
||||||
|
num_attention_heads=NUM_ATTENTION_HEAD,
|
||||||
|
embed_split_hidden=True,
|
||||||
|
vocab_size=VOCAB_SIZE,
|
||||||
|
embed_grad_scale=1,
|
||||||
|
parallel_output=True,
|
||||||
|
hidden_size=HIDDEN_SIZE,
|
||||||
|
num_layers=NUM_LAYER,
|
||||||
|
mlp_ratio=MLP_RATIO,
|
||||||
|
apply_post_layer_norm=False,
|
||||||
|
dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
|
||||||
|
norm_type="rmsnorm",
|
||||||
|
layer_norm_epsilon=1e-5,
|
||||||
|
use_flash_attn=True,
|
||||||
|
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
zero1 parallel (dict):
|
||||||
|
1. size: int
|
||||||
|
* if size <= 0, the size of the zero process group is equal to the size of the dp process group,
|
||||||
|
so parameters will be divided within the range of dp.
|
||||||
|
* if size == 1, zero is not used, and all dp groups retain the full amount of model parameters.
|
||||||
|
* if size > 1 and size <= dp world size, the world size of zero is a subset of dp world size.
|
||||||
|
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
|
||||||
|
2. fsdp: bool, enable/disable torch's fully sharded data parallel, defaults to False.
|
||||||
|
tensor parallel (dict):
|
||||||
|
1. size: int, the size of tensor parallel.
|
||||||
|
2. mode: str, the mode should be 'origin_tp' or 'fstp', defaults to 'origin_tp'. If the mode is 'fstp',
|
||||||
|
the sequence_parallel should be True.
|
||||||
|
pipeline parallel (dict):
|
||||||
|
1. size: int, the size of pipeline parallel.
|
||||||
|
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler,
|
||||||
|
defaults to False.
|
||||||
|
sequence parallel (bool): enable/disable sequence parallel, defaults to False.
|
||||||
|
"""
|
||||||
|
parallel = dict(
|
||||||
|
zero1=dict(size=-1, fsdp=False),
|
||||||
|
tensor=dict(size=8, mode="origin_tp"),
|
||||||
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
|
sequence_parallel=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
cudnn_deterministic = False
|
||||||
|
cudnn_benchmark = False
|
||||||
|
|
||||||
|
monitor = dict(
|
||||||
|
# feishu alert configs
|
||||||
|
alert=dict(
|
||||||
|
enable_feishu_alert=DO_ALERT,
|
||||||
|
feishu_alert_address=None, # feishu webhook to send alert message
|
||||||
|
light_monitor_address=None, # light_monitor address to send heartbeat
|
||||||
|
),
|
||||||
|
)
|
|
@ -0,0 +1,180 @@
|
||||||
|
JOB_NAME = "13b_train"
|
||||||
|
DO_ALERT = False
|
||||||
|
|
||||||
|
SEQ_LEN = 4096
|
||||||
|
HIDDEN_SIZE = 5120
|
||||||
|
NUM_ATTENTION_HEAD = 40
|
||||||
|
MLP_RATIO = 8 / 3
|
||||||
|
NUM_LAYER = 60
|
||||||
|
VOCAB_SIZE = 103168
|
||||||
|
|
||||||
|
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||||
|
# Ckpt folder format:
|
||||||
|
# fs: 'local:/mnt/nfs/XXX'
|
||||||
|
SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||||||
|
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
|
||||||
|
|
||||||
|
# boto3 Ckpt folder format:
|
||||||
|
# import os
|
||||||
|
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
|
||||||
|
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
|
||||||
|
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
|
||||||
|
CHECKPOINT_EVERY = 50
|
||||||
|
ckpt = dict(
|
||||||
|
enable_save_ckpt=False, # enable ckpt save.
|
||||||
|
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
||||||
|
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
|
||||||
|
load_ckpt_folder="local:llm_ckpts/",
|
||||||
|
# 'load_ckpt_info' setting guide:
|
||||||
|
# 1. the 'path' indicate ckpt path,
|
||||||
|
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||||||
|
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
||||||
|
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||||||
|
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
|
||||||
|
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
|
||||||
|
# with an automatic restart mechanism upon training reboot.
|
||||||
|
# Please be aware that if `auto_resume` is not set (its default value is True), it will not load the checkpoint
|
||||||
|
# path specified in `load_ckpt_info` by default.
|
||||||
|
# If you want to initialize your model weights from another model, you must set `auto_resume` to False.
|
||||||
|
# If you want to train from scratch, please set `auto_resume` to False and 'load_ckpt_info' to None.
|
||||||
|
auto_resume=True,
|
||||||
|
checkpoint_every=CHECKPOINT_EVERY,
|
||||||
|
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
||||||
|
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
||||||
|
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
||||||
|
)
|
||||||
|
|
||||||
|
TRAIN_FOLDER = "/path/to/dataset"
|
||||||
|
VALID_FOLDER = "/path/to/dataset"
|
||||||
|
data = dict(
|
||||||
|
seq_len=SEQ_LEN,
|
||||||
|
# micro_num means the number of micro_batch contained in one gradient update
|
||||||
|
micro_num=4,
|
||||||
|
# packed_length = micro_bsz * SEQ_LEN
|
||||||
|
micro_bsz=4,
|
||||||
|
# defaults to the value of micro_num
|
||||||
|
valid_micro_num=4,
|
||||||
|
# defaults to 0, means disable evaluate
|
||||||
|
valid_every=50,
|
||||||
|
pack_sample_into_one=False,
|
||||||
|
total_steps=20,
|
||||||
|
skip_batches="",
|
||||||
|
rampup_batch_size="",
|
||||||
|
# Datasets with less than 50 rows will be discarded
|
||||||
|
min_length=50,
|
||||||
|
# train_folder=TRAIN_FOLDER,
|
||||||
|
# valid_folder=VALID_FOLDER,
|
||||||
|
empty_cache_and_diag_interval=10,
|
||||||
|
diag_outlier_ratio=1.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
grad_scaler = dict(
|
||||||
|
fp16=dict(
|
||||||
|
# the initial loss scale, defaults to 2**16
|
||||||
|
initial_scale=2**16,
|
||||||
|
# the minimum loss scale, defaults to None
|
||||||
|
min_scale=1,
|
||||||
|
# the number of steps to increase loss scale when no overflow occurs
|
||||||
|
growth_interval=1000,
|
||||||
|
),
|
||||||
|
# the multiplication factor for increasing loss scale, defaults to 2
|
||||||
|
growth_factor=2,
|
||||||
|
# the multiplication factor for decreasing loss scale, defaults to 0.5
|
||||||
|
backoff_factor=0.5,
|
||||||
|
# the maximum loss scale, defaults to None
|
||||||
|
max_scale=2**24,
|
||||||
|
# the number of overflows before decreasing loss scale, defaults to 2
|
||||||
|
hysteresis=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
hybrid_zero_optimizer = dict(
|
||||||
|
# Enable low_level_optimzer overlap_communication
|
||||||
|
overlap_sync_grad=True,
|
||||||
|
overlap_sync_param=True,
|
||||||
|
# bucket size for nccl communication params
|
||||||
|
reduce_bucket_size=512 * 1024 * 1024,
|
||||||
|
# grad clipping
|
||||||
|
clip_grad_norm=1.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = dict(
|
||||||
|
label_smoothing=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
adam = dict(
|
||||||
|
lr=1e-4,
|
||||||
|
adam_beta1=0.9,
|
||||||
|
adam_beta2=0.95,
|
||||||
|
adam_beta2_c=0,
|
||||||
|
adam_eps=1e-8,
|
||||||
|
weight_decay=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
lr_scheduler = dict(
|
||||||
|
total_steps=data["total_steps"],
|
||||||
|
init_steps=0, # optimizer_warmup_step
|
||||||
|
warmup_ratio=0.01,
|
||||||
|
eta_min=1e-5,
|
||||||
|
last_epoch=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
beta2_scheduler = dict(
|
||||||
|
init_beta2=adam["adam_beta2"],
|
||||||
|
c=adam["adam_beta2_c"],
|
||||||
|
cur_iter=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
|
||||||
|
num_attention_heads=NUM_ATTENTION_HEAD,
|
||||||
|
embed_split_hidden=True,
|
||||||
|
vocab_size=VOCAB_SIZE,
|
||||||
|
embed_grad_scale=1,
|
||||||
|
parallel_output=True,
|
||||||
|
hidden_size=HIDDEN_SIZE,
|
||||||
|
num_layers=NUM_LAYER,
|
||||||
|
mlp_ratio=MLP_RATIO,
|
||||||
|
apply_post_layer_norm=False,
|
||||||
|
dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
|
||||||
|
norm_type="rmsnorm",
|
||||||
|
layer_norm_epsilon=1e-5,
|
||||||
|
use_flash_attn=True,
|
||||||
|
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
zero1 parallel (dict):
|
||||||
|
1. size: int
|
||||||
|
* if size <= 0, the size of the zero process group is equal to the size of the dp process group,
|
||||||
|
so parameters will be divided within the range of dp.
|
||||||
|
* if size == 1, zero is not used, and all dp groups retain the full amount of model parameters.
|
||||||
|
* if size > 1 and size <= dp world size, the world size of zero is a subset of dp world size.
|
||||||
|
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
|
||||||
|
2. fsdp: bool, enable/disable torch's fully sharded data parallel, defaults to False.
|
||||||
|
tensor parallel (dict):
|
||||||
|
1. size: int, the size of tensor parallel.
|
||||||
|
2. mode: str, the mode should be 'origin_tp' or 'fstp', defaults to 'origin_tp'. If the mode is 'fstp',
|
||||||
|
the sequence_parallel should be True.
|
||||||
|
pipeline parallel (dict):
|
||||||
|
1. size: int, the size of pipeline parallel.
|
||||||
|
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler,
|
||||||
|
defaults to False.
|
||||||
|
sequence parallel (bool): enable/disable sequence parallel, defaults to False.
|
||||||
|
"""
|
||||||
|
parallel = dict(
|
||||||
|
zero1=dict(size=-1, fsdp=False),
|
||||||
|
tensor=dict(size=8, mode="fstp"),
|
||||||
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
|
sequence_parallel=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
cudnn_deterministic = False
|
||||||
|
cudnn_benchmark = False
|
||||||
|
|
||||||
|
monitor = dict(
|
||||||
|
# feishu alert configs
|
||||||
|
alert=dict(
|
||||||
|
enable_feishu_alert=DO_ALERT,
|
||||||
|
feishu_alert_address=None, # feishu webhook to send alert message
|
||||||
|
light_monitor_address=None, # light_monitor address to send heartbeat
|
||||||
|
),
|
||||||
|
)
|
|
@ -0,0 +1,180 @@
|
||||||
|
JOB_NAME = "13b_train"
|
||||||
|
DO_ALERT = False
|
||||||
|
|
||||||
|
SEQ_LEN = 4096
|
||||||
|
HIDDEN_SIZE = 6144
|
||||||
|
NUM_ATTENTION_HEAD = 48
|
||||||
|
MLP_RATIO = 8 / 3
|
||||||
|
NUM_LAYER = 40
|
||||||
|
VOCAB_SIZE = 103168
|
||||||
|
|
||||||
|
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||||
|
# Ckpt folder format:
|
||||||
|
# fs: 'local:/mnt/nfs/XXX'
|
||||||
|
SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||||||
|
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
|
||||||
|
|
||||||
|
# boto3 Ckpt folder format:
|
||||||
|
# import os
|
||||||
|
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
|
||||||
|
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
|
||||||
|
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
|
||||||
|
CHECKPOINT_EVERY = 50
|
||||||
|
ckpt = dict(
|
||||||
|
enable_save_ckpt=False, # enable ckpt save.
|
||||||
|
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
||||||
|
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
|
||||||
|
load_ckpt_folder="local:llm_ckpts/",
|
||||||
|
# 'load_ckpt_info' setting guide:
|
||||||
|
# 1. the 'path' indicate ckpt path,
|
||||||
|
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||||||
|
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
||||||
|
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||||||
|
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
|
||||||
|
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
|
||||||
|
# with an automatic restart mechanism upon training reboot.
|
||||||
|
# Please be aware that if `auto_resume` is not set (its default value is True), it will not load the checkpoint
|
||||||
|
# path specified in `load_ckpt_info` by default.
|
||||||
|
# If you want to initialize your model weights from another model, you must set `auto_resume` to False.
|
||||||
|
# If you want to train from scratch, please set `auto_resume` to False and 'load_ckpt_info' to None.
|
||||||
|
auto_resume=True,
|
||||||
|
checkpoint_every=CHECKPOINT_EVERY,
|
||||||
|
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
||||||
|
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
||||||
|
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
||||||
|
)
|
||||||
|
|
||||||
|
TRAIN_FOLDER = "/path/to/dataset"
|
||||||
|
VALID_FOLDER = "/path/to/dataset"
|
||||||
|
data = dict(
|
||||||
|
seq_len=SEQ_LEN,
|
||||||
|
# micro_num means the number of micro_batch contained in one gradient update
|
||||||
|
micro_num=4,
|
||||||
|
# packed_length = micro_bsz * SEQ_LEN
|
||||||
|
micro_bsz=4,
|
||||||
|
# defaults to the value of micro_num
|
||||||
|
valid_micro_num=4,
|
||||||
|
# defaults to 0, means disable evaluate
|
||||||
|
valid_every=50,
|
||||||
|
pack_sample_into_one=False,
|
||||||
|
total_steps=20,
|
||||||
|
skip_batches="",
|
||||||
|
rampup_batch_size="",
|
||||||
|
# Datasets with less than 50 rows will be discarded
|
||||||
|
min_length=50,
|
||||||
|
# train_folder=TRAIN_FOLDER,
|
||||||
|
# valid_folder=VALID_FOLDER,
|
||||||
|
empty_cache_and_diag_interval=10,
|
||||||
|
diag_outlier_ratio=1.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
grad_scaler = dict(
|
||||||
|
fp16=dict(
|
||||||
|
# the initial loss scale, defaults to 2**16
|
||||||
|
initial_scale=2**16,
|
||||||
|
# the minimum loss scale, defaults to None
|
||||||
|
min_scale=1,
|
||||||
|
# the number of steps to increase loss scale when no overflow occurs
|
||||||
|
growth_interval=1000,
|
||||||
|
),
|
||||||
|
# the multiplication factor for increasing loss scale, defaults to 2
|
||||||
|
growth_factor=2,
|
||||||
|
# the multiplication factor for decreasing loss scale, defaults to 0.5
|
||||||
|
backoff_factor=0.5,
|
||||||
|
# the maximum loss scale, defaults to None
|
||||||
|
max_scale=2**24,
|
||||||
|
# the number of overflows before decreasing loss scale, defaults to 2
|
||||||
|
hysteresis=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
hybrid_zero_optimizer = dict(
|
||||||
|
# Enable low_level_optimzer overlap_communication
|
||||||
|
overlap_sync_grad=True,
|
||||||
|
overlap_sync_param=True,
|
||||||
|
# bucket size for nccl communication params
|
||||||
|
reduce_bucket_size=512 * 1024 * 1024,
|
||||||
|
# grad clipping
|
||||||
|
clip_grad_norm=1.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = dict(
|
||||||
|
label_smoothing=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
adam = dict(
|
||||||
|
lr=1e-4,
|
||||||
|
adam_beta1=0.9,
|
||||||
|
adam_beta2=0.95,
|
||||||
|
adam_beta2_c=0,
|
||||||
|
adam_eps=1e-8,
|
||||||
|
weight_decay=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
lr_scheduler = dict(
|
||||||
|
total_steps=data["total_steps"],
|
||||||
|
init_steps=0, # optimizer_warmup_step
|
||||||
|
warmup_ratio=0.01,
|
||||||
|
eta_min=1e-5,
|
||||||
|
last_epoch=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
beta2_scheduler = dict(
|
||||||
|
init_beta2=adam["adam_beta2"],
|
||||||
|
c=adam["adam_beta2_c"],
|
||||||
|
cur_iter=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
|
||||||
|
num_attention_heads=NUM_ATTENTION_HEAD,
|
||||||
|
embed_split_hidden=True,
|
||||||
|
vocab_size=VOCAB_SIZE,
|
||||||
|
embed_grad_scale=1,
|
||||||
|
parallel_output=True,
|
||||||
|
hidden_size=HIDDEN_SIZE,
|
||||||
|
num_layers=NUM_LAYER,
|
||||||
|
mlp_ratio=MLP_RATIO,
|
||||||
|
apply_post_layer_norm=False,
|
||||||
|
dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
|
||||||
|
norm_type="rmsnorm",
|
||||||
|
layer_norm_epsilon=1e-5,
|
||||||
|
use_flash_attn=True,
|
||||||
|
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
zero1 parallel (dict):
|
||||||
|
1. size: int
|
||||||
|
* if size <= 0, the size of the zero process group is equal to the size of the dp process group,
|
||||||
|
so parameters will be divided within the range of dp.
|
||||||
|
* if size == 1, zero is not used, and all dp groups retain the full amount of model parameters.
|
||||||
|
* if size > 1 and size <= dp world size, the world size of zero is a subset of dp world size.
|
||||||
|
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
|
||||||
|
2. fsdp: bool, enable/disable torch's fully sharded data parallel, defaults to False.
|
||||||
|
tensor parallel (dict):
|
||||||
|
1. size: int, the size of tensor parallel.
|
||||||
|
2. mode: str, the mode should be 'origin_tp' or 'fstp', defaults to 'origin_tp'. If the mode is 'fstp',
|
||||||
|
the sequence_parallel should be True.
|
||||||
|
pipeline parallel (dict):
|
||||||
|
1. size: int, the size of pipeline parallel.
|
||||||
|
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler,
|
||||||
|
defaults to False.
|
||||||
|
sequence parallel (bool): enable/disable sequence parallel, defaults to False.
|
||||||
|
"""
|
||||||
|
parallel = dict(
|
||||||
|
zero1=dict(size=-1, fsdp=False),
|
||||||
|
tensor=dict(size=8, mode="fstp"),
|
||||||
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
|
sequence_parallel=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
cudnn_deterministic = False
|
||||||
|
cudnn_benchmark = False
|
||||||
|
|
||||||
|
monitor = dict(
|
||||||
|
# feishu alert configs
|
||||||
|
alert=dict(
|
||||||
|
enable_feishu_alert=DO_ALERT,
|
||||||
|
feishu_alert_address=None, # feishu webhook to send alert message
|
||||||
|
light_monitor_address=None, # light_monitor address to send heartbeat
|
||||||
|
),
|
||||||
|
)
|
|
@ -2,10 +2,10 @@ JOB_NAME = "7b_train"
|
||||||
DO_ALERT = False
|
DO_ALERT = False
|
||||||
|
|
||||||
SEQ_LEN = 4096
|
SEQ_LEN = 4096
|
||||||
HIDDEN_SIZE = 8192
|
HIDDEN_SIZE = 4096
|
||||||
NUM_ATTENTION_HEAD = 32
|
NUM_ATTENTION_HEAD = 32
|
||||||
MLP_RATIO = 8 / 3
|
MLP_RATIO = 8 / 3
|
||||||
NUM_LAYER = 4
|
NUM_LAYER = 32
|
||||||
VOCAB_SIZE = 103168
|
VOCAB_SIZE = 103168
|
||||||
|
|
||||||
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||||
|
@ -51,7 +51,7 @@ data = dict(
|
||||||
# micro_num means the number of micro_batch contained in one gradient update
|
# micro_num means the number of micro_batch contained in one gradient update
|
||||||
micro_num=4,
|
micro_num=4,
|
||||||
# packed_length = micro_bsz * SEQ_LEN
|
# packed_length = micro_bsz * SEQ_LEN
|
||||||
micro_bsz=2,
|
micro_bsz=4,
|
||||||
# defaults to the value of micro_num
|
# defaults to the value of micro_num
|
||||||
valid_micro_num=4,
|
valid_micro_num=4,
|
||||||
# defaults to 0, means disable evaluate
|
# defaults to 0, means disable evaluate
|
||||||
|
@ -165,7 +165,6 @@ parallel = dict(
|
||||||
tensor=dict(size=8, mode="fstp"),
|
tensor=dict(size=8, mode="fstp"),
|
||||||
pipeline=dict(size=1, interleaved_overlap=True),
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
sequence_parallel=True,
|
sequence_parallel=True,
|
||||||
block_0_full_weight=True,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
cudnn_deterministic = False
|
cudnn_deterministic = False
|
||||||
|
|
|
@ -65,7 +65,8 @@ class HybridZeroOptimizer(BaseOptimizer):
|
||||||
hysteresis = grad_scal_cfg.hysteresis
|
hysteresis = grad_scal_cfg.hysteresis
|
||||||
max_scale = grad_scal_cfg.max_scale
|
max_scale = grad_scal_cfg.max_scale
|
||||||
|
|
||||||
self._fstp_handler = gpc.config.fstp_handler
|
if gpc.config.parallel["tensor"]["mode"] == "fstp":
|
||||||
|
self._fstp_handler = gpc.config.fstp_handler
|
||||||
|
|
||||||
# Zero related args
|
# Zero related args
|
||||||
reduce_bucket_size = zero_cfg.reduce_bucket_size
|
reduce_bucket_size = zero_cfg.reduce_bucket_size
|
||||||
|
|
|
@ -578,6 +578,6 @@ def record_current_batch_training_metrics(
|
||||||
print(tgs_list, flush=True)
|
print(tgs_list, flush=True)
|
||||||
avg_tgs = sum(tgs_list) / len(tgs_list)
|
avg_tgs = sum(tgs_list) / len(tgs_list)
|
||||||
for tgs in tgs_list.copy():
|
for tgs in tgs_list.copy():
|
||||||
if abs(tgs - avg_tgs) > 1000:
|
if abs(tgs - avg_tgs) > 400:
|
||||||
tgs_list.remove(tgs)
|
tgs_list.remove(tgs)
|
||||||
print(f"avg_tgs: {sum(tgs_list)/len(tgs_list)}", flush=True)
|
print(f"avg_tgs: {sum(tgs_list)/len(tgs_list)}", flush=True)
|
||||||
|
|
Loading…
Reference in New Issue