mirror of https://github.com/InternLM/InternLM
add model test
parent
abbf036e5b
commit
135deca621
|
@ -0,0 +1,27 @@
|
||||||
|
name: basic-model-tests-daily
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
workflow_dispatch:
|
||||||
|
schedule:
|
||||||
|
- cron: '48 19 * * *'
|
||||||
|
env:
|
||||||
|
SLURM_PARTITION: llm_s
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
HF_model:
|
||||||
|
runs-on: [t_cluster]
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: load_hf_model
|
||||||
|
run: |
|
||||||
|
conda create -n internlm-model-latest --clone internlm-model-base
|
||||||
|
source activate internlm-model-latest
|
||||||
|
pip install transformers
|
||||||
|
pip install sentencepiece
|
||||||
|
srun -p ${SLURM_PARTITION} --kill-on-bad-exit=1 --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} --gpus-per-task=2 pytest -s -v --color=yes ./tests/test_hf_model.py
|
||||||
|
|
||||||
|
- name: clear_env
|
||||||
|
run: |
|
||||||
|
conda deactivate
|
||||||
|
conda env remove --name internlm-model-latest
|
|
@ -0,0 +1,58 @@
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
|
|
||||||
|
prompts = [
|
||||||
|
"你好",
|
||||||
|
"what's your name"
|
||||||
|
]
|
||||||
|
|
||||||
|
def assert_model(response):
|
||||||
|
assert len(response) != 0
|
||||||
|
assert "user" not in response
|
||||||
|
assert "bot" not in response
|
||||||
|
assert "UNUSED_TOKEN" not in response
|
||||||
|
|
||||||
|
|
||||||
|
class TestChat:
|
||||||
|
@pytest.mark.parametrize("model_name", [
|
||||||
|
"internlm/internlm2-chat-7b",
|
||||||
|
"internlm/internlm2-chat-7b-sft",
|
||||||
|
])
|
||||||
|
def test_demo_default(self, model_name):
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
||||||
|
model = model.eval()
|
||||||
|
for prompt in prompts:
|
||||||
|
response, history = model.chat(tokenizer, prompt, history=[])
|
||||||
|
print(response)
|
||||||
|
assert_model(response)
|
||||||
|
|
||||||
|
for prompt in prompts:
|
||||||
|
length = 0
|
||||||
|
for response, history in model.stream_chat(tokenizer, prompt, history=[]):
|
||||||
|
print(response[length:], flush=True, end="")
|
||||||
|
length = len(response)
|
||||||
|
assert_model(response)
|
||||||
|
|
||||||
|
|
||||||
|
class TestBase:
|
||||||
|
@pytest.mark.parametrize("model_name", [
|
||||||
|
"internlm/internlm2-7b",
|
||||||
|
"internlm/internlm2-base-7b",
|
||||||
|
])
|
||||||
|
def test_demo_default(self, model_name):
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
||||||
|
for prompt in prompts:
|
||||||
|
inputs = tokenizer(prompt, return_tensors="pt")
|
||||||
|
for k,v in inputs.items():
|
||||||
|
inputs[k] = v.cuda()
|
||||||
|
gen_kwargs = {"max_length": 16280, "top_p": 10, "temperature": 1.0, "do_sample": True, "repetition_penalty": 1.0}
|
||||||
|
output = model.generate(**inputs, **gen_kwargs)
|
||||||
|
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
|
||||||
|
print(output)
|
||||||
|
assert_model(output)
|
Loading…
Reference in New Issue