merge internlm/develop into feature_add_moe

pull/182/head
Qu Wenwen 2023-09-19 13:27:43 +08:00
commit 0af5175073
27 changed files with 1637 additions and 214 deletions

View File

@ -16,6 +16,7 @@
[![license](./doc/imgs/license.svg)](./LICENSE)
[![evaluation](./doc/imgs/compass_support.svg)](https://github.com/internLM/OpenCompass/)
[![Documentation Status](https://readthedocs.org/projects/internlm/badge/?version=latest)](https://internlm.readthedocs.io/zh_CN/latest/?badge=latest)
[📘使用法](./doc/en/usage.md) |
[🛠️インストール](./doc/en/install.md) |

View File

@ -16,6 +16,7 @@
[![license](./doc/imgs/license.svg)](https://github.com/open-mmlab/mmdetection/blob/main/LICENSE)
[![evaluation](./doc/imgs/compass_support.svg)](https://github.com/internLM/OpenCompass/)
[![Documentation Status](https://readthedocs.org/projects/internlm/badge/?version=latest)](https://internlm.readthedocs.io/zh_CN/latest/?badge=latest)
[📘使用文档](./doc/usage.md) |
[🛠️安装教程](./doc/install.md) |

View File

@ -16,6 +16,7 @@
[![license](./doc/imgs/license.svg)](./LICENSE)
[![evaluation](./doc/imgs/compass_support.svg)](https://github.com/internLM/OpenCompass/)
[![Documentation Status](https://readthedocs.org/projects/internlm/badge/?version=latest)](https://internlm.readthedocs.io/zh_CN/latest/?badge=latest)
[📘Usage](./doc/en/usage.md) |
[🛠Installation](./doc/en/install.md) |

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-07 10:56+0800\n"
"POT-Creation-Date: 2023-09-13 17:07+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
@ -19,30 +19,33 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../source/checkpoint.rst:2 09c8645fba264cdf9a80c4b62c2bb4d1
#: ../../source/checkpoint.rst:2
msgid "模型保存"
msgstr "Model Checkpointing"
#: ../../source/checkpoint.rst:4 8b158d34631045b1afdb4fb0169b3c71
#: ../../source/checkpoint.rst:4
msgid ""
"InternLM 使用 ``internlm.utils.model_checkpoint.CheckpointManager`` "
"来管理模型保存。 其中,可以 使用 ``CheckpointManager.try_save_checkpoint(train_state)`` "
"来保存指定 step 的模型状态。InternLM支持启动时自动加载最新的模型备份并在接收信号退出训练时自动进行模型备份。"
"来管理模型保存。其中,可以使用 ``CheckpointManager.try_save_checkpoint(train_state)`` "
"来保存指定 step 的模型状态。"
msgstr ""
"InternLM uses ``internlm.utils.model_checkpoint.CheckpointManager`` to manage model checkpointing. In the implementation, "
"we use ``CheckpointManager.try_save_checkpoint(train_state)`` to checkpoint training states at specific steps. InternLM supports "
"automatic loading of latest ckpt at startup and automatic model checkpointing at signal quit."
"InternLM uses ``internlm.utils.model_checkpoint.CheckpointManager`` to "
"manage model checkpointing. In the implementation, we use "
"``CheckpointManager.try_save_checkpoint(train_state)`` to checkpoint "
"training states at specific steps. "
#: ../../source/checkpoint.rst:8 a023b5a6d15749bfaa51cf2da194bda1
#: ../../source/checkpoint.rst:6
msgid "InternLM支持启动时自动加载最新的模型备份并在接收信号退出训练时自动进行模型备份。"
msgstr "InternLM supports automatic loading of latest ckpt at startup and automatic model checkpointing at signal quit. "
#: ../../source/checkpoint.rst:9
msgid "Checkpointing"
msgstr ""
#: 938575c699d1426c87e0b3f589a85d50
#: internlm.utils.model_checkpoint.CheckpointManager:1 of
msgid "StorageManagerContext"
msgstr ""
#: 754d6881cd034c5ebaab0f3362dd14c2
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler:1 of
msgid ""
"Exit signal detection function, if we write the exit step in the "
@ -51,34 +54,27 @@ msgid ""
"quit."
msgstr ""
#: 2169f9fb4a8b40bc9bf6093894fc7a5e 6a55d2b2b24a44c8b78b40f19f4d950b
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training of
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler of
msgid "参数"
msgstr ""
#: 360a89b1591e4627ac432f4d75050354
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler of
msgid "返回"
msgstr ""
#: 2426832f4a8a4c5481be1c940e0e7b50
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler:9 of
msgid "whether to quit."
msgstr ""
#: 5f6842c261544a3c89f32d981b3ad755
#: internlm.utils.model_checkpoint.CheckpointManager.quit_signal_handler of
msgid "返回类型"
msgstr ""
#: 1392da84b6e645bcb8dab605e1231fdc
#: internlm.utils.model_checkpoint.CheckpointManager.wait_async_upload_finish:1
#: of
msgid "wait for all checkpoint uploads to be completed"
msgstr ""
#: d1774593e9c94608b49b10504bfbc38b
#: internlm.utils.model_checkpoint.CheckpointManager.query_latest_snapshot_step_boto3:1
#: of
msgid ""
@ -86,38 +82,25 @@ msgid ""
"found, None will return."
msgstr ""
#: a3abbbd2bd574872892d908ab248e804
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:1 of
msgid "Attempt to restore the training state of the last ckpt."
msgstr ""
#: de021d1eb6d54955a2850c11c0191710
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:3 of
msgid "lr_scheduler object."
msgstr ""
#: 20be15854f2e420a9d96c86b5869bfa6
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:5 of
msgid "optimizer object."
msgstr ""
#: 68f69086c5054acc8aca15c8a764acc5
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:7 of
msgid "learning rate."
msgstr ""
#: 5d34d34a972d4abeab4bda3e49ee157b
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:9 of
msgid "traing states."
msgstr ""
#: 82ebb67afaa748ecabc4cef598d7fc30
#: internlm.utils.model_checkpoint.CheckpointManager.try_resume_training:11 of
msgid "traning dataloader object"
msgstr ""
#: 0c95dfcd712749279daca78166bb4326
#: internlm.utils.model_checkpoint.CheckpointManager.save_checkpoint:1 of
msgid "Save checkpoint to the given folder path."
msgstr ""
#~ msgid "Attempt to restore the training state of the last ckpt."
#~ msgstr ""
#~ msgid "lr_scheduler object."
#~ msgstr ""
#~ msgid "optimizer object."
#~ msgstr ""
#~ msgid "learning rate."
#~ msgstr ""
#~ msgid "traing states."
#~ msgstr ""
#~ msgid "traning dataloader object"
#~ msgstr ""

View File

@ -37,8 +37,8 @@ msgstr "Start Training"
#: ../../source/example/30B_demo.rst:166 24974384d5ab42e68266aeb67ae222ce
msgid "完成以上训练配置后,可启动模型训练,以在 ``slurm`` 平台上为例,启动两节点 16GPU 的训练命令如下所示:"
msgstr "After completing the data preparation and relevant training configurations, you can start the demo training.
The following example shows how to start distributed training in ``slurm`` environments with 16 GPUs."
msgstr "After completing the data preparation and relevant training configurations, you can start the demo training. "
"The following example shows how to start distributed training in ``slurm`` environments with 16 GPUs."
#: ../../source/example/30B_demo.rst:173 948ac71ed53848f9bad07f69d956c4bb
msgid "训练结果"

View File

@ -37,8 +37,8 @@ msgstr "Start Training"
#: ../../source/example/7B_demo.rst:164 9e7a864ae2e14d05b0681f16792e5278
msgid "完成以上训练配置后,可启动模型训练,以在 ``slurm`` 平台上为例,启动单节点 8GPU 的训练命令如下所示:"
msgstr "After completing the data preparation and relevant training configurations, you can start the demo training.
The following example shows how to start distributed training in ``slurm`` environments with 8 GPUs."
msgstr "After completing the data preparation and relevant training configurations, you can start the demo training. "
"The following example shows how to start distributed training in ``slurm`` environments with 8 GPUs."
#: ../../source/example/7B_demo.rst:171 fdd053efb1854d46aabf6c0f279fe7fc
msgid "训练结果"

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-08 15:32+0800\n"
"POT-Creation-Date: 2023-09-14 12:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
@ -23,24 +23,68 @@ msgstr ""
msgid "训练构建"
msgstr "Training Setup"
#: ../../source/initialize.rst:7
#: ../../source/initialize.rst:4
msgid "InternLM 的训练流程可以归纳为两个步骤:"
msgstr "The training process of InternLM can be summarized into two steps: "
#: ../../source/initialize.rst:6
msgid "初始化"
msgstr "Initialization"
#: ../../source/initialize.rst:8
msgid "初始化模型、优化器、数据加载器、Trainer生成不同种类的进程组为混合并行的迭代训练做准备。"
msgstr ""
"Initialize model, optimizer, dataloader, trainer, and create different "
"types of process groups to prepare for iterative steps of hybrid parallel training. "
#: ../../source/initialize.rst:9
msgid "初始化Logger、Checkpoint管理器、Monitor管理器、Profiler对迭代训练的过程观察、预警、记录。"
msgstr ""
"Initialize logger, checkpoint manager, monitor manager, and profiler to "
"watch, alert, and record the iterative training steps. "
#: ../../source/initialize.rst:11
msgid "迭代训练"
msgstr "Iterative training steps"
#: ../../source/initialize.rst:13
msgid "根据配置文件定义的张量并行、流水线并行、数据并行的大小,加载训练引擎和调度器进行混合并行训练。"
msgstr ""
"Load the training engine and scheduler for hybrid parallel training "
"according to the configuration such as tensor parallel size, pipeline "
"parallel size, and data parallel size. "
#: ../../source/initialize.rst:14
msgid "在迭代训练中,调用 Trainer API 进行梯度置零,前向传播计算损失并反向传播,参数更新。"
msgstr ""
"In iterative training steps, the Trainer API is called to perform zero "
"gradients, forward-loss-backward, and parameter update."
#: ../../source/initialize.rst:20
msgid "InternLM训练流程图"
msgstr "InternLM training process"
#: ../../source/initialize.rst:25
msgid "命令行参数解析"
msgstr "Argument Parsing"
#: ../../source/initialize.rst:9
#, fuzzy
#: ../../source/initialize.rst:27
msgid ""
"InternLM 使用 `argparse <https://docs.python.org/3/library/argparse.html>`_"
" 库来向InternLM运行时提供命令行参数配置。用户可使用 "
"``internlm.initialize.get_default_parser()`` 来获取 InternLM "
"的默认解析器,其中包含一些内置参数,用户可以向此解析器添加自定义参数。"
" 库来向InternLM运行时提供命令行参数配置。"
msgstr ""
"InternLM uses the `argparse "
"<https://docs.python.org/3/library/argparse.html>`_ library to supply "
"commandline configuration to the InternLM runtime. Use "
"``internlm.initialize.get_default_parser()`` to get InternLM's default "
"parser with some builtin arguments, users can add custom parameters to "
"this parser."
"commandline configuration to the InternLM runtime. "
#: ../../source/initialize.rst:29
msgid ""
"用户可使用 ``internlm.initialize.get_default_parser()`` 来获取 InternLM "
"的默认解析器,其中包含一些内置参数,用户可以向此解析器添加自定义参数。"
msgstr ""
"Use ``internlm.initialize.get_default_parser()`` to get InternLM's "
"default parser with some builtin arguments, users can add custom "
"parameters to this parser."
#: internlm.initialize.launch.get_default_parser:1 of
msgid ""
@ -69,7 +113,7 @@ msgstr ""
msgid "返回类型"
msgstr ""
#: ../../source/initialize.rst:25
#: ../../source/initialize.rst:45
msgid "模型初始化"
msgstr "Model Initialization"
@ -81,26 +125,26 @@ msgstr ""
msgid "The neural network model to be trained or evaluated."
msgstr ""
#: ../../source/initialize.rst:29
#: ../../source/initialize.rst:49
msgid "InternLM 在配置文件中使用字段 ``model_type`` 和 ``model`` 来控制模型初始化过程。示例模型初始化配置定义如下:"
msgstr ""
"InternLM uses the field ``model_type`` and ``model`` in the config file "
"to control model initialization process. An example model initialization "
"configuratio"
#: ../../source/initialize.rst:57
#: ../../source/initialize.rst:77
msgid "字段 ``model_type`` 指明了要初始化的模型类型"
msgstr ""
"The field ``model_type`` specifics the model type has been registered and"
" to be initialized."
#: ../../source/initialize.rst:58
#: ../../source/initialize.rst:78
msgid "字段 ``model`` 中的参数指定了在模型初始化过程中的参数设置"
msgstr ""
"The parameters in field ``model`` specific the configuration settings "
"during model initialization."
#: ../../source/initialize.rst:60
#: ../../source/initialize.rst:80
msgid ""
"值得注意的是,用户可以定义新的模型类型,并使用装饰器 ``@MODEL_INITIALIZER.register_module`` "
"注册模型的初始化函数,其中 ``MODEL_INITIALIZER`` 是类 "
@ -112,7 +156,7 @@ msgstr ""
" instantiated object of class ``internlm.util.registry.Registry``, the "
"example is shown as follows."
#: ../../source/initialize.rst:72
#: ../../source/initialize.rst:92
msgid "优化器初始化"
msgstr "Optimizer Initialization"
@ -134,7 +178,7 @@ msgstr ""
msgid "A tuple of (optimizer, beta2_scheduler, lr_scheduler)."
msgstr ""
#: ../../source/initialize.rst:79
#: ../../source/initialize.rst:99
msgid "数据加载器初始化"
msgstr "Dataloader Initialization"
@ -162,7 +206,7 @@ msgstr ""
msgid "A tuple of (train_dl, dataset_types)."
msgstr ""
#: ../../source/initialize.rst:86
#: ../../source/initialize.rst:106
msgid "Trainer 初始化"
msgstr "Trainer Initialization"

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-08 15:32+0800\n"
"POT-Creation-Date: 2023-09-14 11:05+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
@ -32,13 +32,13 @@ msgid ""
"InternLM 使用 ``internlm.train.initialize_llm_profile()`` "
"来收集和分析模型训练或推理期间的性能数据,如 CPU/CUDA/memory 等性能数据。这个实现基于 `torch.profiler "
"<https://pytorch.org/docs/stable/profiler.html>`_ ,输出的性能分析 trace 文件可以使用 "
"`tensorboard <https://www.tensorflow.org>`_ 进行可视化。"
"`tensorboard <https://www.tensorflow.org/tensorboard?hl=en>`_ 进行可视化。"
msgstr ""
"InternLM uses ``internlm.train.initialize_llm_profile()`` to profile "
"performance data, execution time duration and breakdown analysis of step "
"time. The implementation is based on `torch.profiler "
"<https://pytorch.org/docs/stable/profiler.html>`_ and output tracing "
"files can be visualized with `tensorboard <https://www.tensorflow.org>`_."
"files can be visualized with `tensorboard <https://www.tensorflow.org/tensorboard?hl=en>`_."
#: ../../source/profiler.rst:11
msgid ""
@ -53,11 +53,15 @@ msgstr ""
#: ../../source/profiler.rst:13
msgid "实际运行生成的 ``Torch Profiler`` 目录结构如下:"
msgstr "The directory structure of ``Torch Profiler`` generated files is as follows:"
msgstr ""
"The directory structure of ``Torch Profiler`` generated files is as "
"follows:"
#: ../../source/profiler.rst:22
msgid "其中, ``traces`` 可以通过 ``TensorBoard`` 可视化,运行命令"
msgstr "Among them, ``traces`` can be visualized through ``TensorBoard`` and run with the command"
msgstr ""
"Among them, ``traces`` can be visualized through ``TensorBoard`` and run "
"with the command"
#: ../../source/profiler.rst:29
msgid ""
@ -66,7 +70,12 @@ msgid ""
"tensorboard "
"<https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html"
"#pytorch-profiler-with-tensorboard>`_"
msgstr "In the opened ``TensorBoard -> PyTorch Profiler -> Views -> Trace`` page, you can see the timeline of profiled operators and GPU kernels. For more usage, please refer to `torch profiler with tensorboard <https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html#pytorch-profiler-with-tensorboard>`_"
msgstr ""
"In the opened ``TensorBoard -> PyTorch Profiler -> Views -> Trace`` page,"
" you can see the timeline of profiled operators and GPU kernels. For more"
" usage, please refer to `torch profiler with tensorboard "
"<https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html"
"#pytorch-profiler-with-tensorboard>`_"
#: internlm.train.training_internlm.initialize_llm_profile:1 of
msgid "Initialize and return the profiler context manager instance."

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-07 10:56+0800\n"
"POT-Creation-Date: 2023-09-14 12:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
@ -19,109 +19,144 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../source/training.rst:2 6eafa5eb08e040039309a39cdb0f1bfe
#: ../../source/training.rst:2
msgid "训练 API"
msgstr "Training API"
#: ../../source/training.rst:4 74d81f3d0ca54c839d4e80bd589aedb2
#: ../../source/training.rst:4
msgid ""
"InternLM 的训练 API 由 ``internlm.core.trainer.Trainer`` "
"管理。在定义了训练引擎和调度器之后,我们可以调用 Trainer API 来执行模型训练、评估、梯度清零和参数更新等。"
msgstr ""
"InternLM training API is managed in ``internlm.core.trainer.Trainer``. After defining the "
"training engine and runtime scheduler, we can call training API to perform training, evaluation, "
"zero gradients and parameter update steps."
"InternLM training API is managed in ``internlm.core.trainer.Trainer``. "
"After defining the training engine and runtime scheduler, we can call "
"training API to perform training, evaluation, zero gradients and "
"parameter update steps."
#: ../../source/training.rst:6 0e0cfddbb2334d3da99d3289edf4161d
#: ../../source/training.rst:6
msgid "有关详细用法,请参阅 Trainer API 文档和示例。"
msgstr "For detailed usage, please refer to Trainer API documentation and examples."
msgstr ""
"For detailed usage, please refer to Trainer API documentation and "
"examples."
#: 7ea10280a8f1489984cb9994aa08976b internlm.core.trainer.Trainer:1 of
#: internlm.core.trainer.Trainer:1 of
msgid ""
"This is a class tending for easy deployments of users' training and "
"evaluation instead of writing their own scripts."
msgstr ""
#: 7969dca55840451193bffd3b071ab3b3 aff576168b59460491bb5da0ce41ea74
#: internlm.core.trainer.Trainer internlm.core.trainer.Trainer.execute_schedule
#: of
msgid "参数"
msgstr ""
#: 59754d3e9ee8452a872bf397c01e0d8c internlm.core.trainer.Trainer:4 of
#: internlm.core.trainer.Trainer:4 of
msgid "Engine responsible for the process function."
msgstr ""
#: 2d18ff15256e48f98901c7a7e0cbbe35 internlm.core.trainer.Trainer:6 of
#: internlm.core.trainer.Trainer:6 of
msgid "Runtime schedule. Defaults to None."
msgstr ""
#: 76f4b3c7feba40eca3ee2b32559c53f5 internlm.core.trainer.Trainer.engine:1 of
#: internlm.core.trainer.Trainer.engine:1 of
msgid ""
"Returns the engine that responsible for managing the training and "
"evaluation process."
msgstr ""
#: c7eae2d4d06c4ef891e314902d80b7f3 internlm.core.trainer.Trainer.schedule:1 of
#: internlm.core.trainer.Trainer.schedule:1 of
msgid "Returns the runtime scheduler."
msgstr ""
#: cb495b21b3444881aec83803e92386d9
#: internlm.core.trainer.Trainer.uses_pipeline:1 of
msgid "Returns whether the pipeline parallel is used or not."
msgstr ""
#: 86b0b631189e46468281a397c5e97350 internlm.core.trainer.Trainer.train:1 of
#: internlm.core.trainer.Trainer.train:1 of
msgid "Sets the model to training mode."
msgstr ""
#: f997e13120ee4d8b9e45ea6698b3e2a6 internlm.core.trainer.Trainer.eval:1 of
#: internlm.core.trainer.Trainer.eval:1 of
msgid "Sets the model to evaluation mode."
msgstr ""
#: a8179e50312d47dcbe9de0433a65c2f7 internlm.core.trainer.Trainer.zero_grad:1
#: of
#: internlm.core.trainer.Trainer.zero_grad:1 of
msgid "Sets the gradient of all parameters in the model to zero."
msgstr ""
#: f936136ef9e0452ca439b7c66dc8884b internlm.core.trainer.Trainer.step:1 of
#: internlm.core.trainer.Trainer.step:1 of
msgid "Executes the parameter update step."
msgstr ""
#: 250e2af89cfd432c84d228f9e03c174c
#: internlm.core.trainer.Trainer.execute_schedule:1 of
msgid ""
"Runs the forward, loss computation, and backward for the model. Returns a"
" tuple of (output, label, loss)."
msgstr ""
#: 6ca7de83033b432792eb0d7935ea04da
#: internlm.core.trainer.Trainer.execute_schedule:4 of
msgid "The data iterator."
msgstr ""
#: 6d3044e75b3149beba3c659e15607b79
#: internlm.core.trainer.Trainer.execute_schedule:6 of
msgid "Additional keyword arguments."
msgstr ""
#: 99d5a297d6414c30b432acf2566f0d3c
#: internlm.core.trainer.Trainer.execute_schedule of
msgid "返回"
msgstr ""
#: b625ebf0cf874edba384456d33e740b4
#: internlm.core.trainer.Trainer.execute_schedule:8 of
msgid "A tuple of (output, label, loss)."
msgstr ""
#: 391cde57d2e2478d8f83a7ad270c2a65
#: internlm.core.trainer.Trainer.execute_schedule of
msgid "返回类型"
msgstr ""
#: d4c4fb0fbddb499786970509cf0c9e13
#: internlm.core.trainer.Trainer.execute_schedule:9 of
msgid "Tuple[:class:`torch.Tensor`]"
msgstr ""
#~ msgid "InternLM 的训练流程可以归纳为两个步骤:"
#~ msgstr "The training process of InternLM can be summarized into two steps: "
#~ msgid "初始化"
#~ msgstr "Initialization"
#~ msgid "初始化模型、优化器、数据加载器、Trainer生成不同种类的进程组为混合并行的迭代训练做准备。"
#~ msgstr ""
#~ "Initialize model, optimizer, dataloader, "
#~ "trainer, and create different types of"
#~ " process groups to prepare for "
#~ "iterative steps of hybrid parallel "
#~ "training. "
#~ msgid "初始化Logger、Checkpoint管理器、Monitor管理器、Profiler对迭代训练的过程观察、预警、记录。"
#~ msgstr ""
#~ "Initialize logger, checkpoint manager, monitor"
#~ " manager, and profiler to watch, "
#~ "alert, and record the iterative training"
#~ " steps. "
#~ msgid "迭代训练"
#~ msgstr "Iterative training steps"
#~ msgid "根据配置文件定义的张量并行、流水线并行、数据并行的大小,加载训练引擎和调度器进行混合并行训练。"
#~ msgstr ""
#~ "Load the training engine and scheduler"
#~ " for hybrid parallel training according "
#~ "to the configuration such as tensor "
#~ "parallel size, pipeline parallel size, "
#~ "and data parallel size. "
#~ msgid "在迭代训练中,调用 Trainer API 进行梯度置零,前向传播计算损失并反向传播,参数更新。"
#~ msgstr ""
#~ "In iterative training steps, the Trainer"
#~ " API is called to perform zero "
#~ "gradients, forward-loss-backward, and "
#~ "parameter update."
#~ msgid "InternLM训练流程图"
#~ msgstr "InternLM training process"

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-07 14:15+0800\n"
"POT-Creation-Date: 2023-09-11 14:25+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
@ -19,11 +19,11 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../../usage.md:2 a64aaaa1525e4e01b0ddcebc42c24bbd
#: ../../../usage.md:2
msgid "使用教程"
msgstr "Quickstart Guide"
#: ../../../usage.md:4 f1b40737fb584d889b82c7f55b652977
#: ../../../usage.md:4
msgid ""
"启动一个 Demo "
"模型训练,需要进行三项准备,**安装****数据集准备**和**模型训练配置**。接下来,首先会介绍数据准备相关的操作,再简要描述模型训练配置相关的内容。"
@ -33,21 +33,21 @@ msgstr ""
"configuration**. In this guide, we will first cover the steps for dataset"
" preparation and then briefly describe the model training configuration."
#: ../../../usage.md:6 b35abe307c2f4d23866fff828308ebf2
#: ../../../usage.md:6
msgid "安装"
msgstr "Installation"
#: ../../../usage.md:7 64a8c1f5f71c45519e636aa7edba10bc
#: ../../../usage.md:7
msgid "请参考[安装文档](./install.md)进行安装。"
msgstr ""
"Please refer to the [installation guide](./install.md) for instructions "
"on how to install the necessary dependencies."
#: ../../../usage.md:9 bd96714d12ee415794dea5a4578bd8cd
#: ../../../usage.md:9
msgid "数据准备 (预训练)"
msgstr "Dataset Preparation (Pre-training)"
#: ../../../usage.md:11 5a0b39fb9da94e96b87db40d1f231a0c
#: ../../../usage.md:11
msgid "InternLM训练任务的数据集包括一系列的`bin`和`meta`文件。使用`tokenizer`从原始文本文件生成训练用数据集。通过在`tools/tokenizer.py`中指定模型参数路径的方式来导入tokenizer模型。目前提供`V7_sft.model`来生成tokens。若想使用不同的模型可直接修改`tokernizer.py`中的模型参数路径。"
msgstr ""
"The dataset for the InternLM training task includes a series of `bin` and"
@ -58,7 +58,7 @@ msgstr ""
"different model, you can directly modify the model parameter path in "
"`tokenizer.py`."
#: ../../../usage.md:13 3cef8126b8784af48d81cc140322909e
#: ../../../usage.md:13
msgid "可以运行以下命令生成原始数据对应的`bin`和`meta`文件,其中参数`text_input_path`表示原始文本数据路径,目前支持`txt`、`json`和`jsonl`三种输入格式,`bin_output_path`表示生成的`bin`文件的保存路径。"
msgstr ""
"You can run the following command to generate `bin` and `meta` files "
@ -67,30 +67,30 @@ msgstr ""
"`txt`, `json`, and `jsonl` formats, while `bin_output_path` represents "
"the save path of the generated `bin` files."
#: ../../../usage.md:18 107ff2280da14cb6a27f4e9857186333
#: ../../../usage.md:18
msgid "下面是一个数据处理的例子:"
msgstr "Here is an example of data processing:"
#: ../../../usage.md:20 c11a9860263c4e2288a561f3435fa706
#: ../../../usage.md:20
msgid "给定一个包含原始数据集的文件`raw_data.txt`,原始数据集如下所示:"
msgstr ""
"Given a file `raw_data.txt` containing the raw dataset, the raw dataset "
"is shown below:"
#: ../../../usage.md:27 4012599b42ab47bd979d2a0b79ca1147
#: ../../../usage.md:27
msgid "可以通过运行以下命令来生成`bin`和`meta`文件:"
msgstr ""
"You can generate the `bin` and `meta` files by running the following "
"command:"
#: ../../../usage.md:32 cca91b6cf53a4082932dd34ea4b7f954
#: ../../../usage.md:32
msgid "需要注意的是,生成的`bin`文件需要保存在`cn`或者`en`或者`code`或者`ja`或者`ar`或者`kaoshi`这六个目录下,以区分数据集的类型。"
msgstr ""
"It should be noted that the generated `bin` files need to be saved in one"
" of the following directories: `cn`, `en`, `code`, `ja`, `ar`, or "
"`kaoshi`, depending on the type of dataset."
#: ../../../usage.md:34 417312ca1e35479e811953f777e3565a
#: ../../../usage.md:34
msgid "其中,`cn`表示中文数据集;`en`表示英文数据集;`code`表示代码数据集;`ja`表示日语数据集;`ar`表示阿拉伯语数据集;`kaoshi`表示考试数据集。"
msgstr ""
"Here, `cn` represents the Chinese dataset, `en` represents the English "
@ -98,22 +98,22 @@ msgstr ""
" dataset, `ar` represents the Arabic dataset, and `kaoshi` represents the"
" exam dataset."
#: ../../../usage.md:36 79c21f8e89b34499ba4e25e20593ec28
#: ../../../usage.md:36
msgid "生成的bin文件的格式如下"
msgstr "The format of the generated `bin` files is as follows:"
#: ../../../usage.md:42 26388d996c4e4116bc216be9bc007f62
#: ../../../usage.md:42
msgid "`bin`文件中的每一行均对应原始数据集中的每一个句子,表示每个句子的`token`下文将用sequence指定。"
msgstr ""
"Each line in the `bin` file corresponds to each sentence in the original "
"dataset, representing the tokens of each sentence (referred to as "
"sequence below)."
#: ../../../usage.md:44 b39148a85ee64a349975d26282fbe59b
#: ../../../usage.md:44
msgid "生成的`meta`文件的格式如下:"
msgstr "The format of the generated `meta` file is as follows:"
#: ../../../usage.md:48 175a6007197a40568535f945672e5df2
#: ../../../usage.md:48
msgid ""
"在`meta`文件中,每个元组对应着`bin`文件中每一个`sequence`的元信息。其中,元组的第一个元素表示每个`sequence`在所有`sequence`中的`starting"
" index`,第二个元素表示每个`sequence`中有多少个`tokens`。"
@ -123,7 +123,7 @@ msgstr ""
"index` of each `sequence` among all `sequences`, and the second element "
"indicates the number of `tokens` for each `sequence`."
#: ../../../usage.md:50 46874a3de3924837979f9949f1237e39
#: ../../../usage.md:50
msgid ""
"例如,对于第一个`sequence``starting index`为 0有 11 "
"个`tokens`;对于第二个`sequence`,由于第一个`sequence`转换为`string`后的长度为`89`,因此它的`starting"
@ -132,17 +132,17 @@ msgstr ""
"For example, the first `sequence` starts at index 0 and has 16 `tokens`. "
"The second `sequence` starts at index 110 and has 24 `tokens`."
#: ../../../usage.md:52 25ea049fa411408b8856e7aa657835ab
#: ../../../usage.md:52
msgid "`json`和`jsonl`类型的文件的`bin`和`meta`文件格式和`txt`一致,此处不再赘叙。"
msgstr ""
"The `bin` and `meta` file formats for `json` and `jsonl` type files are "
"the same as for `txt`, so we won't go over them here."
#: ../../../usage.md:54 bc52f959cb57494483a181e843014ed1
#: ../../../usage.md:54
msgid "数据准备 (微调)"
msgstr "Data Preparation (Fine-tuning)"
#: ../../../usage.md:56 73c74620c2994486acc747ba0c7f0b46
#: ../../../usage.md:56
msgid ""
"微调任务的数据集格式与预训练任务保持一致,生成的数据格式为一系列的`bin`和`meta`文件。以下以 Alpaca "
"数据集为例,介绍微调的数据准备流程。"
@ -152,7 +152,7 @@ msgstr ""
"the Alpaca dataset as an example to explain the data preparation process "
"for fine-tuning."
#: ../../../usage.md:58 75f0e22d10ca413389ec8b947ae6141f
#: ../../../usage.md:58
msgid ""
"下载 [Alpaca 数据集](https://github.com/tatsu-"
"lab/stanford_alpaca/blob/main/alpaca_data.json)"
@ -160,87 +160,87 @@ msgstr ""
"Download the [Alpaca dataset](https://github.com/tatsu-"
"lab/stanford_alpaca/blob/main/alpaca_data.json)."
#: ../../../usage.md:60 667606fcea454af48353a5b40f82fc46
#: ../../../usage.md:60
msgid "对 Alpaca 数据进行 tokenize使用以下命令"
msgstr "Tokenize the Alpaca dataset using the following command:"
#: ../../../usage.md:66 60283b9237c8462ea37288b8ece79081
#: ../../../usage.md:66
msgid "建议用户参考 alpaca_tokenizer.py 编写新的脚本对自己的数据集进行 tokenize"
msgstr ""
"It is recommended that users refer to alpaca_tokenizer.py to write new "
"scripts to tokenize their own datasets"
#: ../../../usage.md:68 cdf45a4de9874e9fb65f7104dcee3c61
#: ../../../usage.md:68
msgid "训练配置"
msgstr "Training Configuration"
#: ../../../usage.md:70 7c42ebc23246450cbc1270e1461b16f6
msgid "以 7B Demo 的配置文件`configs/7B_sft.py`为例,介绍启动一个模型训练所需要进行的数据、模型和并行等相关的配置。"
#: ../../../usage.md:70
#, fuzzy
msgid "以 7B Demo 的配置文件`configs/7B_sft.py`为例:"
msgstr ""
"Taking the configuration file `configs/7B_sft.py` for the 7B demo as an "
"example, let's discuss the data, model, and parallel configurations "
"example,"
#: ../../../usage.md:237
msgid "接下来将详细介绍启动一个模型训练所需要进行的数据、模型、并行和监控等相关的配置。"
msgstr ""
"let's discuss the data, model, parallel and monitoring configurations "
"required to start a model training."
#: ../../../usage.md:72 247cfe98a7f44c2293aa2e2351f1ea69
#: ../../../usage.md:239
msgid "数据配置"
msgstr "Data Configuration"
#: ../../../usage.md:73 31327e7dce5848778db5361b3fbded1c
#: ../../../usage.md:240
msgid "数据相关的关键参数配置及释义如下所示:"
msgstr "Here are the key parameters and their explanations for data configuration:"
#: ../../../usage.md:88 4d2608136fef4141bd6e47f78b8591b2
#: ../../../usage.md:255
msgid "![pack_into_one](./imgs/pack_into_one.png)"
msgstr ""
#: ../../../usage.md:88 c5acb028f2694712b2af788a864d5927
#: ../../../usage.md:255
msgid "pack_into_one"
msgstr ""
#: ../../../usage.md:91 db6b9ce8e8294952845893dd7aad098f
#: ../../../usage.md:258
msgid "目前支持传入数据集文件路径`train_folder`,且要求文件格式如下:"
msgstr ""
"Currently, it supports passing the dataset file path `train_folder`, and "
"the file format is required to be as follows:"
#: ../../../usage.md:98 f22536fc3dfa4552a103a7cb57a20f92
#: ../../../usage.md:265
msgid "数据集的详细内容可参考``数据准备``模块相关的介绍。"
msgstr ""
"For detailed information about the dataset, please refer to the \"Data "
"Preparation\" section."
#: ../../../usage.md:100 bc4f0b06e9c24730a7a831b7aca417e2
#: ../../../usage.md:267
msgid "模型配置"
msgstr "Model Configuration"
#: ../../../usage.md:102 ecf278a0a851496fae2e49c436e59368
#: ../../../usage.md:269
msgid "如果在启动训练时要加载模型 `checkpoint`,可进行如下相关配置:"
msgstr ""
"If you want to load a model checkpoint when starting the training, you "
"can configure it as follows:"
#: ../../../usage.md:115 38244aba74294067a4019d0777621746
#: ../../../usage.md:282
msgid "注意:"
msgstr "Note:"
#: ../../../usage.md:116 19d1eb0a797f4bd9a702a00e525d7753
msgid "`load_model_only_folder`与`load_ckpt_folder`不能同时设置"
msgstr ""
"`load_model_only_folder` and `load_ckpt_folder` cannot be set at the same"
" time."
#: ../../../usage.md:117 3ea27a1f6be044a3959890be69311b24
#: ../../../usage.md:283
msgid "路径若以 `local:` 为前缀,则存储在本地文件系统;若以 `boto3:` 为前缀,则存储在远程 oss 上"
msgstr ""
"If the path starts with `local:`, it means the file is stored in the "
"local file system. If it starts with `boto3:`, it means the file is "
"stored in the remote OSS."
#: ../../../usage.md:119 1d6381b4cfff41d8bdd5347e8a135869
#: ../../../usage.md:285
msgid "模型相关关键参数配置如下所示:"
msgstr "The configuration for the model is as follows:"
#: ../../../usage.md:143 1026791c9f054576857ef1930db6b167
#: ../../../usage.md:309
msgid "注意:用户可自定义模型类型名和模型结构,并配置相对应的模型参数。通过`utils/registry.py`下的`MODEL_INITIALIZER`对象进行模型初始化函数接口注册,在训练主函数`train.py`中初始化模型时,可通过`model_type`配置获取指定的模型初始化接口函数。"
msgstr ""
"Note: Users can customize the model type name and model structure, and "
@ -251,7 +251,7 @@ msgstr ""
"interface function can be obtained through the `model_type` "
"configuration."
#: ../../../usage.md:145 34823bcbe7754190bc9747758c1aad0c
#: ../../../usage.md:311
msgid ""
"*如果基于 InternLM 7B继续训练可以参考 "
"[ModelZoo](https://github.com/InternLM/InternLM/tree/main#model-zoo) 中 "
@ -261,79 +261,76 @@ msgstr ""
"OpenXLab [ModelZoo](https://github.com/InternLM/InternLM/tree/main#model-"
"zoo) to download weights*."
#: ../../../usage.md:147 4cabc928f8884cd38a6bb683b3bfade3
#: ../../../usage.md:313
msgid "并行配置"
msgstr "Parallel Configuration"
#: ../../../usage.md:149 f97ade07340340959345e73567bae793
#: ../../../usage.md:315
msgid "训练并行配置样例如下:"
msgstr "Training parallel configuration example:"
#: ../../../usage.md:158 87fb5a4e4a4047ee8a9b8bb43915636d
#: ../../../usage.md:324
msgid "zero1zero 并行策略,分如下三种情况,默认值为 -1"
msgstr ""
"zero1: zero parallel strategy, divided into the following three cases, "
"default value is -1"
#: ../../../usage.md:159 58dc08e2c52e4aaba99b4fbb6cf2e8b4
#, fuzzy
#: ../../../usage.md:325
msgid "当`zero1 <= 0`,则 zero1 进程组的大小等于数据并行进程组的大小,因此优化器状态参数将在数据并行范围内分配"
msgstr ""
"When `zero1 <= 0`, the size of the zero1 process group is equal to the "
"size of the data parallel process group, so the optimizer state "
"parameters will be split within the data parallel range."
#: ../../../usage.md:160 67e2ebd795d840b29fd1d684a068e90d
#, fuzzy
#: ../../../usage.md:326
msgid "当`zero1 == 1`,则不使用 zero1 ,所有数据并行组保留完整的优化器状态参数"
msgstr ""
"When `zero1 == 1`, zero1 is not used, and all data parallel groups retain "
"the complete optimizer state parameters."
"When `zero1 == 1`, zero1 is not used, and all data parallel groups retain"
" the complete optimizer state parameters."
#: ../../../usage.md:161 7caedfc943514b9b83090b858ef6d163
#, fuzzy
#: ../../../usage.md:327
msgid "当`zero1 > 1`且`zero1 <= data_parallel_world_size`,则 zero1 进程组是数据并行进程组的子集"
msgstr ""
"When `zero1 > 1` and `zero1 <= data_parallel_world_size`, the zero1 process"
" group is a subset of the data parallel process group."
"When `zero1 > 1` and `zero1 <= data_parallel_world_size`, the zero1 "
"process group is a subset of the data parallel process group."
#: ../../../usage.md:162 b38d3a1f72d543c6a44728fb6babea6b
#: ../../../usage.md:328
msgid "tensor张量并行大小通常是每个节点的 GPU 数量,默认值为 1"
msgstr ""
"tensor: tensor parallel size, usually the number of GPUs per node, "
"default is 1"
#: ../../../usage.md:163 237ac76df68f4a999396dad37c5495c3
#: ../../../usage.md:329
msgid "pipeline流水线并行策略"
msgstr "pipeline: pipeline parallel strategy"
#: ../../../usage.md:164 c8c38f6ab2ea432eb9ebbb62618ca33e
#: ../../../usage.md:330
msgid "size流水线并行大小默认值为 1"
msgstr "size: pipeline parallel size, the default value is 1"
#: ../../../usage.md:165 b9158818e72e49acbdd52ad317cb80df
#: ../../../usage.md:331
msgid "interleaved_overlapbool 类型,交错式调度时,开启或关闭通信优化,默认值为关闭"
msgstr ""
"interleaved_overlap: bool type, when interleaved scheduling, enable or "
"disable communication optimization, the default value is False"
#: ../../../usage.md:166 28e4d48661ff4f80aff788fdda604433
#: ../../../usage.md:332
msgid "sequence_parallel是否开启序列化并行默认值为 False"
msgstr ""
"sequence_parallel: Whether to enable sequence parallelism, the default "
"value is False"
#: ../../../usage.md:168 27528ab826824d2280506460e1f2f7bd
#: ../../../usage.md:334
msgid "注意:`数据并行大小 = 总的 GPU 数目 / 流水线并行大小 / 张量并行大小`"
msgstr ""
"Note: `Data parallel size = Total number of GPUs / Pipeline parallel size"
" / Tensor parallel size`"
#: ../../../usage.md:170 5a7af23cec604f1d9096a5ab81993c87
#: ../../../usage.md:336
msgid "启动训练"
msgstr "Start Training"
#: ../../../usage.md:172 795e51542ed84cea83b63c5233bb88bc
#: ../../../usage.md:338
msgid "完成了以上数据集准备和相关训练配置后,可启动 Demo 训练。接下来分别以 slurm 和 torch 环境为例,介绍训练启动方式。"
msgstr ""
"After completing the data preparation and relevant training "
@ -341,25 +338,30 @@ msgstr ""
"following examples demonstrate how to start the training in both slurm "
"and torch environments."
#: ../../../usage.md:174 96402cbe443044c0a0a1695c9847140b
#: ../../../usage.md:340
msgid "若在 slurm 上启动分布式运行环境,多节点 16 卡的运行命令如下所示:"
msgstr ""
"If you want to start distributed training on slurm with 16 GPUs across "
"multiple nodes, use the following command:"
#: ../../../usage.md:179 c569e60401a6471eb9af2473acc4d5a6
#: ../../../usage.md:345
msgid "若在 torch 上启动分布式运行环境,单节点 8 卡的运行命令如下所示:"
msgstr ""
"If you want to start distributed training on torch with 8 GPUs on a "
"single node, use the following command:"
#: ../../../usage.md:184 a045a060d0734aab9d894aed553cef34
#: ../../../usage.md:350
msgid "运行结果"
msgstr "Training Results"
#: ../../../usage.md:186 c68e8dfa259647c7a6e6e0c0446b0b18
#: ../../../usage.md:352
msgid "以 slurm 上单机 8 卡的 Demo 训练配置为例,训练结果日志展示如下:"
msgstr ""
"Taking the configuration of the demo training on a single machine with 8 "
"GPUs on slurm as an example, the training result log is shown below:"
#~ msgid "`load_model_only_folder`与`load_ckpt_folder`不能同时设置"
#~ msgstr ""
#~ "`load_model_only_folder` and `load_ckpt_folder` "
#~ "cannot be set at the same time."

View File

@ -1,8 +1,9 @@
模型保存
===================
InternLM 使用 ``internlm.utils.model_checkpoint.CheckpointManager`` 来管理模型保存。 其中,可以
使用 ``CheckpointManager.try_save_checkpoint(train_state)`` 来保存指定 step 的模型状态。InternLM支持启动时自动加载最新的模型备份并在接收信号退出训练时自动进行模型备份。
InternLM 使用 ``internlm.utils.model_checkpoint.CheckpointManager`` 来管理模型保存。其中,可以使用 ``CheckpointManager.try_save_checkpoint(train_state)`` 来保存指定 step 的模型状态。
InternLM支持启动时自动加载最新的模型备份并在接收信号退出训练时自动进行模型备份。
Checkpointing
-------------

View File

@ -72,14 +72,14 @@ exclude_patterns = []
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = "sphinx_rtd_theme"
html_static_path = ["_static"]
html_static_path = []
# GitHub integration
html_context = {
"display_github": True,
"github_user": "InternLM",
"github_repo": "InternLM",
"github_version": "master",
"github_version": "main",
"conf_py_path": "/doc/code-docs/source/",
}

View File

@ -1,12 +1,32 @@
训练构建
==============
InternLM 的训练流程可以归纳为两个步骤:
1. 初始化
* 初始化模型、优化器、数据加载器、Trainer生成不同种类的进程组为混合并行的迭代训练做准备。
* 初始化Logger、Checkpoint管理器、Monitor管理器、Profiler对迭代训练的过程观察、预警、记录。
2. 迭代训练
* 根据配置文件定义的张量并行、流水线并行、数据并行的大小,加载训练引擎和调度器进行混合并行训练。
* 在迭代训练中,调用 Trainer API 进行梯度置零,前向传播计算损失并反向传播,参数更新。
.. figure:: ../../imgs/hybrid_parallel_training.png
:scale: 45%
:class: with-border
InternLM训练流程图
.. _InternLM-args:
命令行参数解析
----------------
InternLM 使用 `argparse <https://docs.python.org/3/library/argparse.html>`_ 库来向InternLM运行时提供命令行参数配置。用户可使用 ``internlm.initialize.get_default_parser()`` 来获取 InternLM 的默认解析器,其中包含一些内置参数,用户可以向此解析器添加自定义参数。
InternLM 使用 `argparse <https://docs.python.org/3/library/argparse.html>`_ 库来向InternLM运行时提供命令行参数配置。
用户可使用 ``internlm.initialize.get_default_parser()`` 来获取 InternLM 的默认解析器,其中包含一些内置参数,用户可以向此解析器添加自定义参数。
.. code-block:: python

View File

@ -6,7 +6,7 @@
Torch Profiler
-----------------
InternLM 使用 ``internlm.train.initialize_llm_profile()`` 来收集和分析模型训练或推理期间的性能数据,如 CPU/CUDA/memory 等性能数据。这个实现基于 `torch.profiler <https://pytorch.org/docs/stable/profiler.html>`_ ,输出的性能分析 trace 文件可以使用 `tensorboard <https://www.tensorflow.org>`_ 进行可视化。
InternLM 使用 ``internlm.train.initialize_llm_profile()`` 来收集和分析模型训练或推理期间的性能数据,如 CPU/CUDA/memory 等性能数据。这个实现基于 `torch.profiler <https://pytorch.org/docs/stable/profiler.html>`_ ,输出的性能分析 trace 文件可以使用 `tensorboard <https://www.tensorflow.org/tensorboard?hl=en>`_ 进行可视化。
用户如果想使用这个 torch 性能分析工具,需要在启动训练时传递 ``--profiling`` 参数以启用性能分析。完成 torch 性能分析后,用户可以在 ``{JOB_NAME}/{start_time}/traces/rank{}_dp{}_tp{}_pp{}`` 文件夹中看到性能分析结果。

View File

@ -1,2 +1,2 @@
问&答
====
=====

View File

@ -74,7 +74,173 @@ It is recommended that users refer to alpaca_tokenizer.py to write new scripts t
### Training Configuration
Taking the configuration file `configs/7B_sft.py` for the 7B demo as an example, let's discuss the data, model, and parallel configurations required to start a model training.
Taking the configuration file `configs/7B_sft.py` for the 7B demo as an example, let's discuss the data, model, parallel and monitoring configurations required to start a model training.
```python
JOB_NAME = "7b_train"
DO_ALERT = False
SEQ_LEN = 2048
HIDDEN_SIZE = 4096
NUM_ATTENTION_HEAD = 32
MLP_RATIO = 8 / 3
NUM_LAYER = 32
VOCAB_SIZE = 103168
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
# Ckpt folder format:
# fs: 'local:/mnt/nfs/XXX'
SAVE_CKPT_FOLDER = "local:llm_ckpts"
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
# boto3 Ckpt folder format:
# import os
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
CHECKPOINT_EVERY = 50
ckpt = dict(
enable_save_ckpt=False, # enable ckpt save.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
load_ckpt_folder="local:llm_ckpts/",
# 'load_ckpt_info' setting guide:
# 1. the 'path' indicate ckpt path,
# 2. the 'content means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
# 3. the ckpt_type means the type of checkpoint to be loaded, now only 'normal' type is supported.
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
)
TRAIN_FOLDER = "/path/to/dataset"
VALID_FOLDER = "/path/to/dataset"
data = dict(
seq_len=SEQ_LEN,
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=2,
# defaults to the value of micro_num
valid_micro_num=4,
# defaults to 0, means disable evaluate
valid_every=50,
pack_sample_into_one=False,
total_steps=50000,
skip_batches="",
rampup_batch_size="",
# Datasets with less than 50 rows will be discarded
min_length=50,
# train_folder=TRAIN_FOLDER,
# valid_folder=VALID_FOLDER,
empty_cache_and_diag_interval=10,
diag_outlier_ratio=1.1,
)
grad_scaler = dict(
fp16=dict(
# the initial loss scale, defaults to 2**16
initial_scale=2**16,
# the minimum loss scale, defaults to None
min_scale=1,
# the number of steps to increase loss scale when no overflow occurs
growth_interval=1000,
),
# the multiplication factor for increasing loss scale, defaults to 2
growth_factor=2,
# the multiplication factor for decreasing loss scale, defaults to 0.5
backoff_factor=0.5,
# the maximum loss scale, defaults to None
max_scale=2**24,
# the number of overflows before decreasing loss scale, defaults to 2
hysteresis=2,
)
hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication
overlap_sync_grad=True,
overlap_sync_param=True,
# bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024,
# grad clipping
clip_grad_norm=1.0,
)
loss = dict(
label_smoothing=0,
)
adam = dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
)
lr_scheduler = dict(
total_steps=data["total_steps"],
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
beta2_scheduler = dict(
init_beta2=adam["adam_beta2"],
c=adam["adam_beta2_c"],
cur_iter=-1,
)
model = dict(
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
num_attention_heads=NUM_ATTENTION_HEAD,
embed_split_hidden=True,
vocab_size=VOCAB_SIZE,
embed_grad_scale=1,
parallel_output=True,
hidden_size=HIDDEN_SIZE,
num_layers=NUM_LAYER,
mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False,
dtype="torch.float16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
)
"""
zero1 parallel:
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
so parameters will be divided within the range of dp.
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
pipeline parallel (dict):
1. size: int, the size of pipeline parallel.
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
tensor parallel: tensor parallel size, usually the number of GPUs per node.
"""
parallel = dict(
zero1=8,
pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False,
)
cudnn_deterministic = False
cudnn_benchmark = False
monitor = dict(
# feishu alert configs
alert=dict(
enable_feishu_alert=DO_ALERT,
feishu_alert_address=None, # feishu webhook to send alert message
light_monitor_address=None, # light_monitor address to send heartbeat
),
)
```
#### Data Configuration
Here are the key parameters and their explanations for data configuration:

Binary file not shown.

After

Width:  |  Height:  |  Size: 208 KiB

View File

@ -66,7 +66,174 @@ python tools/alpaca_tokenizer.py /path/to/alpaca_dataset /path/to/output_dataset
### 训练配置
以 7B Demo 的配置文件`configs/7B_sft.py`为例,介绍启动一个模型训练所需要进行的数据、模型和并行等相关的配置。
以 7B Demo 的配置文件`configs/7B_sft.py`为例:
```python
JOB_NAME = "7b_train"
DO_ALERT = False
SEQ_LEN = 2048
HIDDEN_SIZE = 4096
NUM_ATTENTION_HEAD = 32
MLP_RATIO = 8 / 3
NUM_LAYER = 32
VOCAB_SIZE = 103168
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
# Ckpt folder format:
# fs: 'local:/mnt/nfs/XXX'
SAVE_CKPT_FOLDER = "local:llm_ckpts"
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
# boto3 Ckpt folder format:
# import os
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
CHECKPOINT_EVERY = 50
ckpt = dict(
enable_save_ckpt=False, # enable ckpt save.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
load_ckpt_folder="local:llm_ckpts/",
# 'load_ckpt_info' setting guide:
# 1. the 'path' indicate ckpt path,
# 2. the 'content means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
# 3. the ckpt_type means the type of checkpoint to be loaded, now only 'normal' type is supported.
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
)
TRAIN_FOLDER = "/path/to/dataset"
VALID_FOLDER = "/path/to/dataset"
data = dict(
seq_len=SEQ_LEN,
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=2,
# defaults to the value of micro_num
valid_micro_num=4,
# defaults to 0, means disable evaluate
valid_every=50,
pack_sample_into_one=False,
total_steps=50000,
skip_batches="",
rampup_batch_size="",
# Datasets with less than 50 rows will be discarded
min_length=50,
# train_folder=TRAIN_FOLDER,
# valid_folder=VALID_FOLDER,
empty_cache_and_diag_interval=10,
diag_outlier_ratio=1.1,
)
grad_scaler = dict(
fp16=dict(
# the initial loss scale, defaults to 2**16
initial_scale=2**16,
# the minimum loss scale, defaults to None
min_scale=1,
# the number of steps to increase loss scale when no overflow occurs
growth_interval=1000,
),
# the multiplication factor for increasing loss scale, defaults to 2
growth_factor=2,
# the multiplication factor for decreasing loss scale, defaults to 0.5
backoff_factor=0.5,
# the maximum loss scale, defaults to None
max_scale=2**24,
# the number of overflows before decreasing loss scale, defaults to 2
hysteresis=2,
)
hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication
overlap_sync_grad=True,
overlap_sync_param=True,
# bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024,
# grad clipping
clip_grad_norm=1.0,
)
loss = dict(
label_smoothing=0,
)
adam = dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
)
lr_scheduler = dict(
total_steps=data["total_steps"],
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
beta2_scheduler = dict(
init_beta2=adam["adam_beta2"],
c=adam["adam_beta2_c"],
cur_iter=-1,
)
model = dict(
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
num_attention_heads=NUM_ATTENTION_HEAD,
embed_split_hidden=True,
vocab_size=VOCAB_SIZE,
embed_grad_scale=1,
parallel_output=True,
hidden_size=HIDDEN_SIZE,
num_layers=NUM_LAYER,
mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False,
dtype="torch.float16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
)
"""
zero1 parallel:
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
so parameters will be divided within the range of dp.
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
pipeline parallel (dict):
1. size: int, the size of pipeline parallel.
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
tensor parallel: tensor parallel size, usually the number of GPUs per node.
"""
parallel = dict(
zero1=8,
pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False,
)
cudnn_deterministic = False
cudnn_benchmark = False
monitor = dict(
# feishu alert configs
alert=dict(
enable_feishu_alert=DO_ALERT,
feishu_alert_address=None, # feishu webhook to send alert message
light_monitor_address=None, # light_monitor address to send heartbeat
),
)
```
接下来将详细介绍启动一个模型训练所需要进行的数据、模型、并行和监控等相关的配置。
#### 数据配置
数据相关的关键参数配置及释义如下所示:

View File

@ -4,6 +4,7 @@
# adopted from https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/engine
import json
from collections import deque
from typing import Iterable, Optional
from internlm.core.engine import Engine
@ -58,6 +59,24 @@ class TrainState:
if batch_sampler:
self.init_batch_sampler(batch_sampler)
# tgs statistic
self.tgs_statistic = {
"sum_step": 0,
"sum_tg": 0,
"sum_time": 0,
"sum_last_tg_10": 0,
"sum_last_time_10": 0,
"sum_last_tg_50": 0,
"sum_last_time_50": 0,
"SMA_tg_50": 0,
"SMA_time_50": 0,
"SMA_tg_50_list": deque(),
"SMA_time_50_list": deque(),
"sum_tgs": 0,
"last_tgs_10": 0,
"last_tgs_50": 0,
}
def init_batch_sampler(self, batch_sampler):
"""
Args:

View File

@ -379,9 +379,52 @@ def record_current_batch_training_metrics(
max_length_in_batch = max([(b[1:] - b[:-1]).max().item() for b in batch[0]["cu_seqlens"]])
max_samples_in_batch = max([len(b) - 1 for b in batch[0]["cu_seqlens"]])
min_samples_in_batch = min([len(b) - 1 for b in batch[0]["cu_seqlens"]])
tk_per_gpu = 0
time_cost = time.time() - start_time
tk_per_gpu = round(
num_tokens_in_batch * gpc.get_world_size(ParallelMode.DATA) / gpc.get_world_size(ParallelMode.GLOBAL),
4,
)
tgs_statistic = train_state.tgs_statistic
tgs_statistic["sum_step"] += 1
tgs_statistic["sum_tg"] += tk_per_gpu
tgs_statistic["sum_time"] += time_cost
tgs_statistic["sum_last_tg_10"] += tk_per_gpu
tgs_statistic["sum_last_time_10"] += time_cost
tgs_statistic["sum_last_tg_50"] += tk_per_gpu
tgs_statistic["sum_last_time_50"] += time_cost
tgs_statistic["SMA_tg_50"] += tk_per_gpu
tgs_statistic["SMA_time_50"] += time_cost
tgs_statistic["SMA_tg_50_list"].append(tk_per_gpu)
tgs_statistic["SMA_time_50_list"].append(time_cost)
if tgs_statistic["sum_step"] > 50:
tgs_statistic["SMA_tg_50"] -= tgs_statistic["SMA_tg_50_list"][0]
tgs_statistic["SMA_time_50"] -= tgs_statistic["SMA_time_50_list"][0]
tgs_statistic["SMA_tg_50_list"].popleft()
tgs_statistic["SMA_time_50_list"].popleft()
last_tgs_1 = round(tk_per_gpu / time_cost, 2)
tgs_statistic["sum_tgs"] += last_tgs_1
if tgs_statistic["sum_step"] % 10 == 0:
tgs_statistic["last_tgs_10"] = round(tgs_statistic["sum_last_tg_10"] / tgs_statistic["sum_last_time_10"], 2)
tgs_statistic["sum_last_tg_10"] = 0
tgs_statistic["sum_last_time_10"] = 0
if tgs_statistic["sum_step"] % 50 == 0:
tgs_statistic["last_tgs_50"] = round(tgs_statistic["sum_last_tg_50"] / tgs_statistic["sum_last_time_50"], 2)
tgs_statistic["sum_last_tg_50"] = 0
tgs_statistic["sum_last_time_50"] = 0
last_tgs_10 = tgs_statistic["last_tgs_10"]
last_tgs_50 = tgs_statistic["last_tgs_50"]
tgs_all = round(tgs_statistic["sum_tg"] / tgs_statistic["sum_time"], 2)
tgs_avg = round(tgs_statistic["sum_tgs"] / tgs_statistic["sum_step"], 2)
tgs_SMA = round(tgs_statistic["SMA_tg_50"] / tgs_statistic["SMA_time_50"], 2)
tflops = get_tflops_func((time.time() - start_time))
tgs_origin = round(
num_tokens_in_batch
* gpc.get_world_size(ParallelMode.DATA)
/ gpc.get_world_size(ParallelMode.GLOBAL)
@ -389,14 +432,18 @@ def record_current_batch_training_metrics(
2,
)
tflops = get_tflops_func((time.time() - start_time))
infos = {
"tflops": tflops,
"step": batch_count,
"loss": loss.item() - moe_loss.item(),
"moe_loss": moe_loss.item(),
"tgs (tokens/gpu/second)": tk_per_gpu,
"tgs (tokens/gpu/second)": tgs_origin,
"tgs/last_tgs_1": last_tgs_1,
"tgs/tgs_all": tgs_all,
"tgs/tgs_avg": tgs_avg,
"tgs/tgs_SMA": tgs_SMA,
"tgs/last_tgs_10": last_tgs_10,
"tgs/last_tgs_50": last_tgs_50,
"lr": lr,
"loss_scale": scaler,
"grad_norm": grad_norm,
@ -436,7 +483,7 @@ def record_current_batch_training_metrics(
"num_consumed_tokens": train_state.num_consumed_tokens,
"loss": loss.item() - moe_loss.item(),
"flops": tflops,
"tgs": tk_per_gpu,
"tgs": last_tgs_1,
"acc": acc_perplex["acc"],
"perplexity": acc_perplex["perplexity"],
"fwd_bwd_time": fwd_bwd_time,

View File

@ -541,8 +541,8 @@ class CheckpointManager:
Args:
ckpt_config (dict): model checkpoint config.
model (nn.module): model obj
optimizer (object): optimzier obj.
model (nn.module): model obj.
optimizer (object): optimizer obj.
lr_scheduler (object): lr_scheduler obj.
model_config (dict): model config.
"""
@ -806,7 +806,6 @@ now step_count is {train_state.step_count}",
return dict(path=latest_ckpt, content=("all",), ckpt_type="internlm")
def try_resume_training(self, train_state: TrainState, current_time=""):
if self.load_ckpt_info is None or self.load_ckpt_info["path"] is None:
if gpc.is_rank_for_log():
logger.info(

View File

@ -0,0 +1,65 @@
import multiprocessing as mp
import pytest
import torch
from internlm.model.embedding import Embedding1D
from tests.test_model.test_model_internlm import build_environment, seed_all
def check_embedding(args):
# init
rank, world_size = args
device = torch.device("cuda")
build_environment(rank, world_size)
rtol, atol = (1e-3, 5e-3)
vocab_size = 4
hidden_size = 2
# fix seed
seed_all(1024)
# define embedding
embedding = Embedding1D(
num_embeddings=vocab_size,
embedding_dim=hidden_size,
padding_idx=None,
)
embedding.weight.data.copy_(torch.randn(vocab_size, hidden_size))
embedding = embedding.to(device)
# create input
input_ids = torch.tensor([[0, 2], [1, 3]]).to(device)
result = embedding(input_ids)
standard_list = [[[-1.4837, 0.2671], [0.6002, -0.5496]], [[-1.8337, -0.1047], [1.0391, 0.2261]]]
standard_result = torch.tensor(standard_list).to(device)
# check output
assert torch.allclose(result, standard_result, rtol=rtol, atol=atol, equal_nan=True)
loss = torch.randn_like(result)
# backward
result.backward(loss)
grad = embedding.weight.grad
standard_glist = [[-0.4461, 0.5602], [0.4353, 1.2988], [-0.0625, -1.3609], [0.9595, -0.1144]]
standard_grad = torch.tensor(standard_glist).to(device)
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol, equal_nan=True)
@pytest.mark.embedding
def test_embedding():
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_embedding, [[rank, 8] for rank in range(8)])
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_embedding.py"])

View File

@ -0,0 +1,379 @@
import multiprocessing as mp
import random
import numpy as np
import pytest
import torch
from torch import nn
import internlm
from internlm.core.context import ParallelMode
from internlm.core.context.parallel_context import Config
from internlm.core.context.parallel_context import global_context as gpc
from internlm.model.linear import RewardModelLinear, ScaleColumnParallelLinear
from internlm.model.modeling_internlm import PackedFlashBaseLayer1D
from internlm.model.utils import gather_forward_split_backward
config = Config(
dict(
parallel=dict(zero1=1, pipeline=dict(size=1, interleaved_overlap=False), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=2048, micro_num=1, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
checkpoint=False,
num_attention_heads=2,
embed_split_hidden=True,
vocab_size=103168,
embed_grad_scale=1,
parallel_output=True,
hidden_size=1024,
num_layers=2,
mlp_ratio=1,
apply_post_layer_norm=False,
dtype=torch.bfloat16,
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1,
),
resume_tb_folder="",
tensorboard_folder="",
alert_address=None,
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
)
)
def build_environment(rank, world_size):
import os
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12345"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def check_block(args):
# init
rank, world_size = args
build_environment(rank, world_size)
device = torch.device("cuda")
rtol, atol = (1e-3, 5e-3)
# fix seed
seed_all(1024)
# define block
blocks = nn.ModuleList(
[
PackedFlashBaseLayer1D(
hidden_size=4, # 768
num_attention_heads=2, # 12
mlp_ratio=2,
attn_drop_rate=0.0,
drop_rate=0.0,
dtype=torch.bfloat16,
layer_norm_epsilon=1e-5,
checkpoint=lid < 0,
layer_idx=lid + 0, # This parameter is used for caching during generation
residual_in_fp32=False,
device=device,
norm_type="rmsnorm",
dropout_selective_checkpoint=True,
use_scaled_init=True,
use_swiglu=True,
)
for lid in range(4) # 32
]
)
# create input
cu_seqlens = torch.tensor([0, 2, 4], dtype=torch.int32).to(device) # [0, 8, 16]
indexes = torch.tensor([0, 1, 0, 1]).to(device) # [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7]
hidden_states = torch.tensor([[0, 3, 2, 1]]).to(device) # [[4, 118, 0, 1, 2, 3, 0, 1, 1, 97, 0, 0, 0, 0, 0, 0]]
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
hidden_states = torch.tensor(
[
[
[-1.1620, 1.3113, 0.1507, 2.2698],
[-1.2610, 1.0990, 0.3787, -0.3478],
[1.4001, 1.1982, -0.6696, 0.3269],
[1.3304, 1.2262, 1.0735, -1.1169],
]
]
)
hidden_states = hidden_states.squeeze(0).to(device).requires_grad_()
# forward
for _, block in enumerate(blocks):
block = block.to(torch.bfloat16)
block = block.to(device)
hidden_states = block(
hidden_states,
cu_seqlens=cu_seqlens,
indexes=indexes,
inference_params=None,
max_seqlen=max_seqlen,
)
result = hidden_states
standard_result = torch.tensor(
[
[-1.1621, 1.3111, 0.1509, 2.2697],
[-1.2611, 1.0988, 0.3787, -0.3478],
[1.4000, 1.1982, -0.6694, 0.3268],
[1.3303, 1.2262, 1.0736, -1.1169],
]
).to(device)
# check output
assert torch.allclose(result, standard_result, rtol=rtol, atol=atol)
hidden_states.retain_grad()
loss = torch.randn_like(result)
# backward
result.backward(loss)
grad = hidden_states.grad
standard_grad = torch.tensor(
[
[0.7999, -0.2595, 0.2649, -1.3256],
[0.7064, 0.0283, -0.5508, 0.6494],
[-1.4657, -2.0316, 1.3776, 0.7211],
[-0.6046, 0.4329, -0.1884, 1.1170],
]
).to(device)
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol)
def check_head(args):
# init
rank, world_size, is_reward = args
device = torch.device("cuda")
build_environment(rank, world_size)
rtol, atol = (1e-3, 5e-3)
hidden_size = 4
vocab_size = 4
embed_grad_scale = 1
# fix seed
seed_all(1024)
# load standard
if is_reward:
head_cls = RewardModelLinear
standard_result = torch.tensor([[3.5938], [1.0703], [3.6250], [3.6250]], dtype=torch.bfloat16).to(device)
standard_grad = torch.tensor(
[
[-0.2246, 0.0164, -0.0591, 0.1660],
[-0.5625, 0.0408, -0.1484, 0.4160],
[-0.1758, 0.0128, -0.0464, 0.1299],
[-0.4785, 0.0347, -0.1260, 0.3516],
],
dtype=torch.bfloat16,
).to(device)
else:
head_cls = ScaleColumnParallelLinear
standard_result = torch.tensor(
[
[3.5938, -2.2188, 2.0312, 3.5625],
[1.0703, -1.1797, 1.1406, 1.6641],
[3.6250, -2.0156, 1.7656, 3.4531],
[3.6250, -2.0156, 1.7656, 3.4531],
],
dtype=torch.bfloat16,
).to(device)
standard_grad = torch.tensor(
[
[-0.2354, 0.0981, -0.2930, -0.6328],
[0.2344, -0.2334, -0.0918, 0.1396],
[-0.5898, -1.0156, -0.7070, 1.3750],
[0.0242, -0.1494, 0.1206, -0.0427],
],
dtype=torch.bfloat16,
).to(device)
# define head
head = head_cls(
in_features=hidden_size,
out_features=gpc.get_world_size(ParallelMode.TENSOR) if is_reward else vocab_size,
process_group=gpc.get_group(ParallelMode.TENSOR),
bias=False,
device=device,
dtype=torch.bfloat16,
weight_scale=embed_grad_scale,
)
head = head.to(torch.bfloat16)
head = head.to(device)
# create input
hidden_states = torch.tensor(
[
[8.3726, 1.9245, 5.5101, 1.0000],
[3.3474, 2.9582, 1.0000, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
],
dtype=torch.bfloat16,
requires_grad=True,
).to(device)
# forward
result = head(hidden_states)
# check output
assert torch.allclose(result, standard_result, rtol=rtol, atol=atol)
hidden_states.retain_grad()
loss = torch.randn_like(result)
# backward
result.backward(loss)
grad = hidden_states.grad
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol)
def check_gather_forward(args):
# init
rank, world_size, parallel_tensor = args
assert parallel_tensor in [1, 2]
config.parallel.tensor = parallel_tensor
device = torch.device("cuda")
build_environment(rank, world_size)
rtol, atol = (1e-3, 5e-3)
# fix seed
seed_all(1024)
# load standard
if parallel_tensor == 1:
standard_result = torch.tensor(
[
[8.3726, 1.9245, 5.5101, 1.0000],
[3.3474, 2.9582, 1.0000, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
]
).to(device)
standard_grad = torch.tensor(
[
[-0.4461, 0.5602, -0.0625, -1.3609],
[0.4353, 1.2988, 0.9595, -0.1144],
[-0.7593, -0.4031, 0.2041, 1.4955],
[0.5706, 0.9047, -0.6965, -0.3757],
]
).to(device)
else:
standard_result = torch.tensor(
[
[8.3726, 1.9245, 5.5101, 1.0000, 8.3726, 1.9245, 5.5101, 1.0000],
[3.3474, 2.9582, 1.0000, 1.0000, 3.3474, 2.9582, 1.0000, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000, 8.3726, 1.2875, 5.5101, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000, 8.3726, 1.2875, 5.5101, 1.0000],
]
).to(device)
if rank % 2 == 0:
standard_grad = torch.tensor(
[
[-0.4461, 0.5602, -0.0625, -1.3609],
[-0.7593, -0.4031, 0.2041, 1.4955],
[0.8093, 1.7580, 1.2996, -0.7545],
[1.0474, -0.5767, -1.0401, 0.8233],
]
).to(device)
else:
standard_grad = torch.tensor(
[
[0.4353, 1.2988, 0.9595, -0.1144],
[0.5706, 0.9047, -0.6965, -0.3757],
[-1.3589, -0.7202, 0.6094, -0.8208],
[-1.0042, 0.3695, 0.2511, -0.2718],
]
).to(device)
# create input
hidden_states = torch.tensor(
[
[8.3726, 1.9245, 5.5101, 1.0000],
[3.3474, 2.9582, 1.0000, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
],
requires_grad=True,
).to(device)
# forward
result = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=-1)
# check output
assert torch.allclose(result, standard_result, rtol=rtol, atol=atol)
loss = torch.randn_like(result)
hidden_states.retain_grad()
# backward
result.backward(loss)
grad = hidden_states.grad
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol)
@pytest.mark.block
def test_block():
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_block, [[rank, 8] for rank in range(8)])
pool.close()
pool.join()
@pytest.mark.head
@pytest.mark.parametrize("is_reward", [True, False])
def test_head(is_reward):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_head, [[rank, 8, is_reward] for rank in range(8)])
pool.close()
pool.join()
@pytest.mark.gather_forward
@pytest.mark.parametrize("parallel_tensor", [1, 2])
def test_gather_forward(parallel_tensor):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_gather_forward, [[rank, 8, parallel_tensor] for rank in range(8)])
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_model_internlm.py"])

View File

@ -0,0 +1,84 @@
import multiprocessing as mp
import pytest
import torch
from internlm.model.utils import try_import_RMSNorm
from tests.test_model.test_model_internlm import build_environment, seed_all
RMSNorm = try_import_RMSNorm()
def check_norm(args):
# init
rank, world_size = args
device = torch.device("cuda")
build_environment(rank, world_size)
rtol, atol = (1e-3, 5e-3)
hidden_size = 4
layer_norm_epsilon = 1e-05
# fix seed
seed_all(1024)
# define norm
norm = RMSNorm(hidden_size, eps=layer_norm_epsilon)
norm = norm.to(device)
# create input
hidden_states = torch.tensor(
[
[8.3726, 1.9245, 5.5101, 1.0000],
[3.3474, 2.9582, 1.0000, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
[8.3726, 1.2875, 5.5101, 1.0000],
],
requires_grad=True,
).to(device)
# forward
result = norm(hidden_states.float())
standard = torch.tensor(
[
[1.6329, 0.3753, 1.0746, 0.1950],
[1.4288, 1.2626, 0.4268, 0.4268],
[1.6490, 0.2536, 1.0852, 0.1970],
[1.6490, 0.2536, 1.0852, 0.1970],
]
).to(device)
# check output
assert torch.allclose(result, standard, rtol=rtol, atol=atol, equal_nan=True)
hidden_states.retain_grad()
loss = torch.randn_like(result)
# backward
result.backward(loss)
grad = hidden_states.grad
standard_grad = torch.tensor(
[
[-0.0193, 0.1248, 0.0324, -0.2573],
[-0.2140, 0.2010, 0.2901, -0.1683],
[-0.0815, -0.0689, 0.0850, 0.3027],
[0.0847, 0.1739, -0.1554, -0.0773],
]
).to(device)
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol, equal_nan=True)
@pytest.mark.norm
def test_norm():
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_norm, [[rank, 8] for rank in range(8)])
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_norm.py"])

View File

@ -0,0 +1,364 @@
import copy
import multiprocessing as mp
import random
import numpy as np
import pytest
import torch
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import internlm
from internlm.core.context.parallel_context import Config
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.solver.optimizer.utils import ParamBcastSyncHandler
class MlpModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
config = Config(
dict(
parallel=dict(zero1=1, pipeline=dict(size=1, interleaved_overlap=False), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=2048, micro_num=1, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
dtype=torch.bfloat16,
),
resume_tb_folder="",
tensorboard_folder="",
alert_address=None,
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
grad_scaler=dict(
fp16=dict(
initial_scale=1,
min_scale=1,
growth_interval=1,
),
growth_factor=1.1,
backoff_factor=0.9,
max_scale=1,
hysteresis=1,
),
adam=dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
),
hybrid_zero_optimizer=dict(
overlap_sync_grad=False,
overlap_sync_param=False,
reduce_bucket_size=512 * 1024 * 1024,
clip_grad_norm=1.0,
),
)
)
def build_environment(rank, world_size):
import os
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12345"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
def loose_close(a, b, dtype: torch.dtype = torch.float32):
if dtype is torch.float32:
rtol = 1.3e-6
atol = 1e-5
elif dtype is torch.bfloat16:
rtol = 2e-2
atol = 2e-2
if isinstance(a, torch.Tensor):
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
def init_optimizer_grouped_parameters(check_group, model):
if check_group:
optimizer_grouped_parameters = [
{
"params": list(model.parameters())[:2],
"weight_decay": config.adam.weight_decay,
},
{
"params": list(model.parameters())[2:],
"weight_decay": config.adam.weight_decay,
},
]
else:
optimizer_grouped_parameters = [{"params": model.parameters(), "weight_decay": config.adam.weight_decay}]
return optimizer_grouped_parameters
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def exam_hybrid_zero_optim_with_ddp(args):
# init
rank, world_size, zero_parallel, overlap_sync_param, overlap_sync_grad, micro_num, check_group, dtype = args
# TODO: Need to test the combine of overlap param and group_params when ready
# ParamBcastSyncHandler does not consider paramters in different optimizer group currently
if overlap_sync_param and check_group:
return
config.parallel.zero1 = zero_parallel
config.hybrid_zero_optimizer.overlap_sync_param = overlap_sync_param
config.hybrid_zero_optimizer.overlap_sync_grad = overlap_sync_grad
config.data.micro_num = micro_num
config.model.dtype = dtype
totel_step = 5
if not overlap_sync_param:
totel_step = 1
build_environment(rank, world_size)
seed_all(1024)
# create models
torch_model = MlpModel().cuda()
zero_model = copy.deepcopy(torch_model).to(dtype)
torch_model = DDP(torch_model.cuda(), static_graph=True).cuda()
# create optimizer
if config.hybrid_zero_optimizer.overlap_sync_param:
param_bcast_sync_handler = ParamBcastSyncHandler(zero_model)
else:
param_bcast_sync_handler = None
optimizer_grouped_parameters_zero = init_optimizer_grouped_parameters(check_group, zero_model)
optimizer_grouped_parameters_torch = init_optimizer_grouped_parameters(check_group, torch_model)
naive_optimizer = torch.optim.AdamW(
params=optimizer_grouped_parameters_zero,
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
zero_optimizer = HybridZeroOptimizer(
naive_optimizer,
grad_scal_cfg=config.grad_scaler,
zero_cfg=config.hybrid_zero_optimizer,
param_bcast_sync_handler=param_bcast_sync_handler,
)
torch_optimizer = torch.optim.AdamW(
params=optimizer_grouped_parameters_torch,
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
for _ in range(totel_step):
zero_optimizer.zero_grad()
torch_optimizer.zero_grad()
zero_optimizer.skip_grad_reduce = True
for num in range(micro_num):
if num == micro_num - 1:
zero_optimizer.skip_grad_reduce = False
seed_all(1024 + rank)
# create input
input_data = torch.rand(16, 128).cuda()
# zero-dp forward
zero_output = zero_model(input_data.to(dtype))
# torch-ddp forward
torch_output = torch_model(input_data)
# check output
loose_close(zero_output, torch_output, dtype=dtype)
# zero-dp backward
zero_optimizer.backward(zero_output.mean())
# torch-ddp backward
if num == micro_num - 1:
torch_output.mean().backward()
else:
with torch_model.no_sync():
torch_output.mean().backward()
# zero-dp step
zero_optimizer.step()
# torch-ddp step
torch_optimizer.step()
# check grad
if check_group:
group1 = zip(list(torch_model.parameters())[:2], list(zero_model.parameters())[:2])
group2 = zip(list(torch_model.parameters())[2:], list(zero_model.parameters())[2:])
for torch_parm, zero_parm in group1:
if zero_parm.grad is not None:
loose_close(torch_parm.grad, zero_parm.grad, dtype=dtype)
for torch_parm, zero_parm in group2:
if zero_parm.grad is not None:
loose_close(torch_parm.grad, zero_parm.grad, dtype=dtype)
else:
for torch_parm, zero_parm in zip(torch_model.parameters(), zero_model.parameters()):
if zero_parm.grad is not None:
loose_close(torch_parm.grad, zero_parm.grad, dtype=dtype)
torch.cuda.synchronize()
# check updated param
if check_group:
group1 = zip(list(torch_model.parameters())[:2], list(zero_model.parameters())[:2])
group2 = zip(list(torch_model.parameters())[2:], list(zero_model.parameters())[2:])
for torch_parm, zero_parm in group1:
loose_close(torch_parm, zero_parm, dtype=dtype)
for torch_parm, zero_parm in group2:
loose_close(torch_parm, zero_parm, dtype=dtype)
else:
for torch_parm, zero_parm in zip(torch_model.parameters(), zero_model.parameters()):
loose_close(torch_parm, zero_parm, dtype=dtype)
def exam_hybrid_zero_optim_with_ckpt_load_save(args):
# init
rank, world_size, zero_parallel, check_group, dtype = args
config.parallel.zero1 = zero_parallel
config.parallel.dtype = dtype
build_environment(rank, world_size)
# create models
zero_model = MlpModel().cuda().to(dtype)
# create optimizer
if config.hybrid_zero_optimizer.overlap_sync_param:
param_bcast_sync_handler = ParamBcastSyncHandler(zero_model)
else:
param_bcast_sync_handler = None
optimizer_grouped_parameters1 = init_optimizer_grouped_parameters(check_group, zero_model)
optimizer_grouped_parameters2 = init_optimizer_grouped_parameters(check_group, zero_model)
naive_optimizer = torch.optim.AdamW(
params=optimizer_grouped_parameters1,
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
zero_optimizer = HybridZeroOptimizer(
naive_optimizer,
grad_scal_cfg=config.grad_scaler,
zero_cfg=config.hybrid_zero_optimizer,
param_bcast_sync_handler=param_bcast_sync_handler,
)
naive_optimizer2 = torch.optim.AdamW(
params=optimizer_grouped_parameters2,
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
zero_optimizer2 = HybridZeroOptimizer(
naive_optimizer2,
grad_scal_cfg=config.grad_scaler,
zero_cfg=config.hybrid_zero_optimizer,
param_bcast_sync_handler=param_bcast_sync_handler,
)
# save and load states
states = zero_optimizer.state_dict()
zero_optimizer2.load_state_dict(states)
# check fp32 model weights
for zero1_param, zero2_param in zip(
zero_optimizer._fp32_flat_param_groups_of_current_rank.values(),
zero_optimizer2._fp32_flat_param_groups_of_current_rank.values(),
):
assert torch.equal(zero1_param, zero2_param)
# check fp16 model weights
for zero1_param, zero2_param in zip(
zero_optimizer._fp16_param_groups.values(), zero_optimizer2._fp16_param_groups.values()
):
assert zero1_param == zero2_param
zero_parallel_check_list = [-1, 1, 4]
overlap_sync_param_check_list = [True, False]
overlap_sync_grad_check_list = [True, False]
miro_num_check_list = [1, 2, 4]
check_group_list = [True, False]
dtype_list = [torch.float32, torch.bfloat16]
@pytest.mark.parametrize("zero_parallel", zero_parallel_check_list)
@pytest.mark.parametrize("overlap_sync_param", overlap_sync_param_check_list)
@pytest.mark.parametrize("overlap_sync_grad", overlap_sync_grad_check_list)
@pytest.mark.parametrize("micro_num", miro_num_check_list)
@pytest.mark.parametrize("check_group", check_group_list)
@pytest.mark.parametrize("dtype", dtype_list)
def test_hybrid_zero_optim_with_ddp(
zero_parallel, overlap_sync_param, overlap_sync_grad, micro_num, check_group, dtype
):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(
exam_hybrid_zero_optim_with_ddp,
[
[rank, 8, zero_parallel, overlap_sync_param, overlap_sync_grad, micro_num, check_group, dtype]
for rank in range(8)
],
)
pool.close()
pool.join()
@pytest.mark.parametrize("zero_parallel", zero_parallel_check_list)
@pytest.mark.parametrize("check_group", check_group_list)
@pytest.mark.parametrize("dtype", dtype_list)
def test_hybrid_zero_optim_with_ckpt_load_save(zero_parallel, check_group, dtype):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(
exam_hybrid_zero_optim_with_ckpt_load_save,
[[rank, 8, zero_parallel, check_group, dtype] for rank in range(8)],
)
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_optimizer.py"])

View File

@ -38,7 +38,7 @@ def convert2hf(model_config, states_tp_pps):
current_states["lm_head.weight"] = states.pop("head.weight")
for i in range(model_config["num_layers"]):
states.pop(f"blocks.{i}.mixer.rotary_emb.inv_freq")
states.pop(f"blocks.{i}.mixer.rotary_emb.inv_freq", None)
wqkv = states.pop(f"blocks.{i}.mixer.Wqkv.weight").reshape(
3, model_config["num_attention_heads"], -1, model_config["hidden_size"]

View File

@ -20,6 +20,7 @@
""" PyTorch InternLM model."""
import math
from typing import List, Optional, Tuple, Union
import threading, queue
import torch
import torch.utils.checkpoint
@ -810,23 +811,47 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs):
"""
Return a generator in format: (response, history)
Eg.
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
"""
response_queue = queue.Queue(maxsize=20)
class ChatStreamer(BaseStreamer):
def __init__(self, tokenizer) -> None:
super().__init__()
self.tokenizer = tokenizer
self.queue = response_queue
self.query = query
self.history = history
self.response = ""
self.received_inputs = False
self.queue.put((self.response, history + [(self.query, self.response)]))
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("ChatStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if not self.received_inputs:
# The first received value is input_ids, ignore here
self.received_inputs = True
return
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
if token.strip() != "<eoa>":
print(token, end="")
self.response = self.response + token
history = self.history + [(self.query, self.response)]
self.queue.put((self.response, history))
def end(self):
print("")
self.queue.put(None)
def stream_producer():
return self.chat(
tokenizer=tokenizer,
query=query,
@ -839,6 +864,17 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
**kwargs
)
def consumer():
producer = threading.Thread(target=stream_producer)
producer.start()
while True:
res = response_queue.get()
if res is not None:
return
yield res
return consumer()
@add_start_docstrings(
"""