mirror of https://github.com/InternLM/InternLM
parent
26205c1edf
commit
03851ea2fa
|
@ -0,0 +1,68 @@
|
|||
name: demo-in-readme
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
- "develop"
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
- "**.md"
|
||||
|
||||
jobs:
|
||||
dataset-preparation:
|
||||
runs-on: [lmtest]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: raw-chinese-data
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
sh ./ci_scripts/data/tokenizer_chinese.sh
|
||||
|
||||
- name: alpaca-data
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
sh ./ci_scripts/data/tokenizer_alpaca.sh
|
||||
|
||||
|
||||
train:
|
||||
runs-on: [lmtest]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: slurm-train
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
sh ./ci_scripts/train/slurm_train.sh
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts
|
||||
|
||||
- name: torchrun-train
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
sh ./ci_scripts/train/torchrun.sh
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts
|
||||
|
||||
convert-model-then-load:
|
||||
runs-on: [lmtest]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: convert-model-then-load
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
sh ./ci_scripts/model/convert_to_hf.sh
|
||||
cd ./hf_ckpt
|
||||
srun -p llm2 python ../ci_scripts/model/loaded_as_transformer.py
|
||||
cd ..
|
||||
rm -rf $GITHUB_WORKSPACE/hf_ckpt
|
||||
|
||||
load-chat-model-in-hf:
|
||||
runs-on: [lmtest]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: chat-model-in-hf
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
srun -p llm2 python ./ci_scripts/model/demo_load_7B_chat_model.py
|
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
export exit_code=0
|
||||
|
||||
function if_exist() {
|
||||
ls -l $file_path
|
||||
exit_code_now=$?
|
||||
exit_code=$(($exit_code + $exit_code_now))
|
||||
}
|
||||
|
||||
function num_files() {
|
||||
file_num=$(ls -l $file_dir |wc -l)
|
||||
echo "there are $file_num files in $file_dir"
|
||||
}
|
|
@ -0,0 +1,22 @@
|
|||
#!/bin/bash
|
||||
|
||||
rm -rf /mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result/*
|
||||
|
||||
python tools/alpaca_tokenizer.py /mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/alpaca_data.json /mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result tools/V7_sft.model --split_ratio 0.1
|
||||
|
||||
file_one="/mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result/train/en/dataset.bin"
|
||||
file_two="/mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result/train/en/dataset.bin.meta"
|
||||
file_three="/mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result/valid/en/dataset.bin"
|
||||
file_four="/mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/result/valid/en/dataset.bin.meta"
|
||||
file_list=($file_one $file_two $file_three $file_four)
|
||||
|
||||
source ./ci_scripts/common/basic_func.sh
|
||||
for file_path in ${file_list[@]};
|
||||
do
|
||||
if_exist $file_path
|
||||
done
|
||||
|
||||
if [ $exit_code -ne 0 ]
|
||||
then
|
||||
exit 1
|
||||
fi
|
|
@ -0,0 +1,19 @@
|
|||
#!/bin/bash
|
||||
|
||||
rm -rf /mnt/petrelfs/qa-caif-cicd/data/lm_data/cn_data/result.*
|
||||
srun -p llm2 python tools/tokenizer.py --text_input_path /mnt/petrelfs/qa-caif-cicd/data/lm_data/cn_data/raw_data.txt --bin_output_path /mnt/petrelfs/qa-caif-cicd/data/lm_data/cn_data/result.bin
|
||||
|
||||
file_one="/mnt/petrelfs/qa-caif-cicd/data/lm_data/cn_data/result.bin"
|
||||
file_two="/mnt/petrelfs/qa-caif-cicd/data/lm_data/cn_data/result.bin.meta"
|
||||
file_list=($file_one $file_two)
|
||||
|
||||
source ./ci_scripts/common/basic_func.sh
|
||||
for file_path in ${file_list[@]};
|
||||
do
|
||||
if_exist $file_path
|
||||
done
|
||||
|
||||
if [ $exit_code -ne 0 ]
|
||||
then
|
||||
exit 1
|
||||
fi
|
|
@ -0,0 +1,33 @@
|
|||
#!/bin/bash
|
||||
|
||||
rm -rf ./hf_ckpt/*
|
||||
python ./tools/transformers/convert2hf.py --src_folder /mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/llm_ckpts/20 --tgt_folder hf_ckpt/ --tokenizer ./tools/V7_sft.model
|
||||
|
||||
#assert exists model
|
||||
file_one="$GITHUB_WORKSPACE/hf_ckpt/tokenizer.model"
|
||||
file_two="$GITHUB_WORKSPACE/hf_ckpt/config.json"
|
||||
file_three="$GITHUB_WORKSPACE/hf_ckpt/modeling_internlm.py"
|
||||
file_list=($file_one $file_two $file_three)
|
||||
file_dir="$GITHUB_WORKSPACE/hf_ckpt/*"
|
||||
|
||||
source ./ci_scripts/common/basic_func.sh
|
||||
|
||||
for file_path in ${file_list[@]};
|
||||
do
|
||||
if_exist $file_path
|
||||
done
|
||||
|
||||
|
||||
num_files ${file_dir}
|
||||
|
||||
if [ $file_num -ne 9 ]
|
||||
then
|
||||
echo "The num of files is not right"
|
||||
ls -l $file_dir
|
||||
exit_code=$(($exit_code + 1))
|
||||
fi
|
||||
|
||||
if [ $exit_code -ne 0 ]
|
||||
then
|
||||
exit 1
|
||||
fi
|
|
@ -0,0 +1,12 @@
|
|||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).cuda()
|
||||
model = model.eval()
|
||||
response, history = model.chat(tokenizer, "你好", history=[])
|
||||
print(response)
|
||||
assert len(response) != 0
|
||||
response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history)
|
||||
print(response)
|
||||
assert len(response) != 0
|
|
@ -0,0 +1,7 @@
|
|||
from transformers import AutoModel
|
||||
|
||||
model = AutoModel.from_pretrained("../hf_ckpt/", trust_remote_code=True).cuda()
|
||||
print(model)
|
||||
assert model.config.hidden_size == 2048
|
||||
assert model.config.num_attention_heads == 16
|
||||
assert model.config.num_hidden_layers == 16
|
|
@ -0,0 +1,130 @@
|
|||
JOB_NAME = "7b_train"
|
||||
|
||||
SEQ_LEN = 1024
|
||||
HIDDEN_SIZE = 2048
|
||||
NUM_ATTENTION_HEAD = 16
|
||||
MLP_RATIO = 8 / 3
|
||||
NUM_LAYER = 16
|
||||
VOCAB_SIZE = 103168
|
||||
|
||||
# Ckpt folder format:
|
||||
# fs: 'local:/mnt/nfs/XXX'
|
||||
# oss: 'boto3:s3://model_weights/XXX'
|
||||
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||
#SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||||
SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||||
#LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
|
||||
ckpt = dict(
|
||||
# Path to save training ckpt.
|
||||
save_ckpt_folder=SAVE_CKPT_FOLDER,
|
||||
# Path to continue training ckpt (load model weights and scheduler/context states).
|
||||
# load_ckpt_folder=LOAD_CKPT_FOLDER,
|
||||
# Path to initialize with given model weights.
|
||||
# load_model_only_folder=MODEL_ONLY_FOLDER,
|
||||
checkpoint_every=20,
|
||||
# Wheter to load optimizer states when continuing training.
|
||||
load_optimizer=True,
|
||||
)
|
||||
|
||||
TRAIN_FOLDER = "/mnt/petrelfs/qa-caif-cicd/data/lm_data/alpaca_data/train/en"
|
||||
data = dict(
|
||||
seq_len=SEQ_LEN,
|
||||
# micro_num means the number of micro_batch contained in one gradient update
|
||||
micro_num=4,
|
||||
# packed_length = micro_bsz * SEQ_LEN
|
||||
micro_bsz=2,
|
||||
pack_sample_into_one=False,
|
||||
total_steps=20,
|
||||
skip_batches="",
|
||||
rampup_batch_size="",
|
||||
# Datasets with less than 50 rows will be discarded
|
||||
min_length=50,
|
||||
# train_folder=TRAIN_FOLDER,
|
||||
)
|
||||
|
||||
grad_scaler = dict(
|
||||
fp16=dict(
|
||||
# the initial loss scale, defaults to 2**16
|
||||
initial_scale=2**16,
|
||||
# the minimum loss scale, defaults to None
|
||||
min_scale=1,
|
||||
# the number of steps to increase loss scale when no overflow occurs
|
||||
growth_interval=1000,
|
||||
),
|
||||
# the multiplication factor for increasing loss scale, defaults to 2
|
||||
growth_factor=2,
|
||||
# the multiplication factor for decreasing loss scale, defaults to 0.5
|
||||
backoff_factor=0.5,
|
||||
# the maximum loss scale, defaults to None
|
||||
max_scale=2**24,
|
||||
# the number of overflows before decreasing loss scale, defaults to 2
|
||||
hysteresis=2,
|
||||
)
|
||||
|
||||
hybrid_zero_optimizer = dict(
|
||||
# Enable low_level_optimzer overlap_communication
|
||||
zero_overlap_communication=True,
|
||||
# bucket size for nccl communication params
|
||||
reduce_bucket_size=512 * 1024 * 1024,
|
||||
# grad clipping
|
||||
clip_grad_norm=1.0,
|
||||
)
|
||||
|
||||
loss = dict(
|
||||
label_smoothing=0,
|
||||
)
|
||||
|
||||
adam = dict(
|
||||
lr=1e-4,
|
||||
adam_beta1=0.9,
|
||||
adam_beta2=0.95,
|
||||
adam_beta2_c=0,
|
||||
adam_eps=1e-8,
|
||||
weight_decay=0.01,
|
||||
)
|
||||
|
||||
lr_scheduler = dict(
|
||||
total_steps=data["total_steps"],
|
||||
init_steps=0, # optimizer_warmup_step
|
||||
warmup_ratio=0.01,
|
||||
eta_min=1e-5,
|
||||
last_epoch=-1,
|
||||
)
|
||||
|
||||
beta2_scheduler = dict(
|
||||
init_beta2=adam["adam_beta2"],
|
||||
c=adam["adam_beta2_c"],
|
||||
cur_iter=-1,
|
||||
)
|
||||
|
||||
model = dict(
|
||||
checkpoint=False,
|
||||
num_attention_heads=NUM_ATTENTION_HEAD,
|
||||
embed_split_hidden=True,
|
||||
vocab_size=VOCAB_SIZE,
|
||||
embed_grad_scale=1,
|
||||
parallel_output=True,
|
||||
hidden_size=HIDDEN_SIZE,
|
||||
num_layers=NUM_LAYER,
|
||||
mlp_ratio=MLP_RATIO,
|
||||
apply_post_layer_norm=False,
|
||||
dtype="torch.bfloat16",
|
||||
norm_type="rmsnorm",
|
||||
layer_norm_epsilon=1e-5,
|
||||
)
|
||||
"""
|
||||
zero1 parallel:
|
||||
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
|
||||
so parameters will be divided within the range of dp.
|
||||
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
|
||||
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
|
||||
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
|
||||
pipeline parallel: pipeline parallel size, only 1 is accepted currently.
|
||||
tensor parallel: tensor parallel size, usually the number of GPUs per node, only 1 is accepted currently.
|
||||
"""
|
||||
parallel = dict(
|
||||
zero1=8,
|
||||
)
|
||||
|
||||
cudnn_deterministic = False
|
||||
cudnn_benchmark = False
|
|
@ -0,0 +1,20 @@
|
|||
#!/bin/bash
|
||||
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts/20
|
||||
|
||||
srun -p llm2 --quotatype=spot -n 8 --ntasks-per-node=8 --gpus-per-task=1 python train.py --config ./ci_scripts/train/ci_7B_sft.py
|
||||
|
||||
file_dir="$GITHUB_WORKSPACE/llm_ckpts/20/*.pt"
|
||||
source ./ci_scripts/common/basic_func.sh
|
||||
|
||||
num_files ${file_dir}
|
||||
|
||||
if [ $file_num -ne 21 ]
|
||||
then
|
||||
echo "The num of files is not right"
|
||||
ls -l $file_dir
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
#!/bin/bash
|
||||
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts/20
|
||||
srun -p llm2 -N 1 torchrun --nnodes=1 --nproc_per_node=8 --master_port=29501 train.py --config ./ci_scripts/train/ci_7B_sft.py --launcher "torch"
|
||||
|
||||
file_dir="$GITHUB_WORKSPACE/llm_ckpts/20/*.pt"
|
||||
source ./ci_scripts/common/basic_func.sh
|
||||
|
||||
num_files ${file_dir}
|
||||
|
||||
if [ $file_num -ne 21 ]
|
||||
then
|
||||
echo "The num of files is not right"
|
||||
ls -l $file_dir
|
||||
rm -rf $GITHUB_WORKSPACE/llm_ckpts
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue