diff --git a/README.md b/README.md index 0c7250a..9cabdc7 100644 --- a/README.md +++ b/README.md @@ -244,6 +244,41 @@ response = pipe(prompt) print(response) ``` +### Using internLM with other AI-Agent application development frameworks + +Expand the entries below for detailed usage + +1.
LangChain: LangChain is a framework for developing applications powered by large language models (LLMs). +
+ +1.
LlamaIndex: LlamaIndex is a data framework for your LLM applications. +
+ +1.
LazyLLM: Easyest and lazyest way for building multi-agent LLMs applications. + + Once you have installed `lazyllm`, and then you can use the following code to build your own chatbot: + + ```python + from lazyllm import TrainableModule, WebModule + # Model will be download automatically if you have an internet connection + m = TrainableModule('internlm2-chat-7b') + # will launch a chatbot server + WebModule(m).start().wait() + ``` + + You can use the following code to finetune your model if needed. + + ```python + from lazyllm import TrainableModule, WebModule + m = TrainableModule('internlm2-chat-7b').trainset('/patt/to/your_data.json') + # TrainableModule m will be finetuned and deployed when web module is update once dataset is set + WebModule(m).update().wait() + ``` + + LazyLLM Documents: https://lazyllm.readthedocs.io/ + +
+ ## Agent InternLM2.5-Chat models have excellent tool utilization capabilities and can work with function calls in a zero-shot manner. It also supports to conduct analysis by collecting information from more than 100 web pages. See more examples in [agent section](./agent/).