InternLM/tests/test_hf_model.py

226 lines
8.0 KiB
Python
Raw Normal View History

import pytest
import torch
from PIL import Image
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
prompts = ['你好', "what's your name"]
def assert_model(response):
assert len(response) != 0
assert 'UNUSED_TOKEN' not in response
class TestChat:
"""Test cases for chat model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm2-chat-7b', 'internlm/internlm2-chat-7b-sft',
'internlm/internlm2-chat-1_8b', 'internlm/internlm2-chat-1_8b-sft'
],
)
@pytest.mark.parametrize(
'usefast',
[
True,
False,
],
)
def test_demo_default(self, model_name, usefast):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True,
use_fast=usefast)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
trust_remote_code=True).cuda()
model = model.eval()
history = []
for prompt in prompts:
response, history = model.chat(tokenizer, prompt, history=history)
print(response)
assert_model(response)
history = []
for prompt in prompts:
length = 0
for response, history in model.stream_chat(tokenizer,
prompt,
history=[]):
print(response[length:], flush=True, end='')
length = len(response)
assert_model(response)
class TestBase:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm2-7b', 'internlm/internlm2-base-7b',
'internlm/internlm2-1_8b'
],
)
@pytest.mark.parametrize(
'usefast',
[
True,
False,
],
)
def test_demo_default(self, model_name, usefast):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True,
use_fast=usefast)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
trust_remote_code=True).cuda()
for prompt in prompts:
inputs = tokenizer(prompt, return_tensors='pt')
for k, v in inputs.items():
inputs[k] = v.cuda()
gen_kwargs = {
'max_length': 128,
'top_p': 10,
'temperature': 1.0,
'do_sample': True,
'repetition_penalty': 1.0,
}
output = model.generate(**inputs, **gen_kwargs)
output = tokenizer.decode(output[0].tolist(),
skip_special_tokens=True)
print(output)
assert_model(output)
class TestMath:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
['internlm/internlm2-math-7b', 'internlm/internlm2-math-base-7b'],
)
@pytest.mark.parametrize(
'usefast',
[
True,
False,
],
)
def test_demo_default(self, model_name, usefast):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True,
use_fast=usefast)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True,
torch_dtype=torch.float16).cuda()
model = model.eval()
model = model.eval()
response, history = model.chat(tokenizer,
'1+1=',
history=[],
meta_instruction='')
print(response)
assert_model(response)
assert '2' in response
class TestMMModel:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm-xcomposer2-7b',
],
)
def test_demo_default(self, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float32,
trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
model = model.eval()
img_path_list = [
'tests/panda.jpg',
'tests/bamboo.jpeg',
]
images = []
for img_path in img_path_list:
image = Image.open(img_path).convert('RGB')
image = model.vis_processor(image)
images.append(image)
image = torch.stack(images)
query = '<ImageHere> <ImageHere>please write an article ' \
+ 'based on the images. Title: my favorite animal.'
with torch.cuda.amp.autocast():
response, history = model.chat(tokenizer,
query=query,
image=image,
history=[],
do_sample=False)
print(response)
assert len(response) != 0
assert 'panda' in response
query = '<ImageHere> <ImageHere>请根据图片写一篇作文:我最喜欢的小动物。' \
+ '要求:选准角度,确定立意,明确文体,自拟标题。'
with torch.cuda.amp.autocast():
response, history = model.chat(tokenizer,
query=query,
image=image,
history=[],
do_sample=False)
print(response)
assert len(response) != 0
assert '熊猫' in response
class TestMMVlModel:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm-xcomposer2-vl-7b',
],
)
def test_demo_default(self, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
torch.set_grad_enabled(False)
# init model and tokenizer
model = AutoModel.from_pretrained(
model_name, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
query = '<ImageHere>Please describe this image in detail.'
image = 'tests/image.webp'
with torch.cuda.amp.autocast():
response, _ = model.chat(tokenizer,
query=query,
image=image,
history=[],
do_sample=False)
print(response)
assert len(response) != 0
assert 'Oscar Wilde' in response
assert 'Live life with no excuses, travel with no regret' in response