InternLM/tools/alpaca_tokenizer.py

172 lines
5.2 KiB
Python
Raw Normal View History

2023-07-06 04:55:23 +00:00
import argparse
import json
import sentencepiece as spm
from tqdm import tqdm
import os.path as osp
from pathlib import Path
import numpy as np
def process(dataset_path, sp_model):
"""Process data sample from input dataset
Args:
dataset_path (str): Path of dataset json file.
sp_model (str): Path of tokenizer.
Yields:
tuple: dumped processed data sample and length of tokens.
"""
dataset = json.load(open(dataset_path))
for data in dataset:
yield tokenize(get_chat_format_data(data), sp_model)
def get_chat_format_data(ori_data):
"""Format original data
Args:
ori_data (dict): input data sample.
Returns:
dict: data sample with chat format.
"""
input_str = ori_data['input']
instruction_str = ori_data['instruction']
output_str = ori_data['output']
data = dict()
if input_str != "":
data['user'] = f'<|User|>:{instruction_str}\n{input_str}'
else:
data['user'] = f'<|User|>:{instruction_str}'
data['bot'] = f'<|Bot|>:{output_str}'
return data
def tokenize(sample, sp_model):
"""Tokenize input dataset
Args:
sample (dict): Input data sample.
sp_model (str): Path of tokenizer.
Returns:
tuple: dumped processed data sample and length of tokens.
"""
special_tokens_map = {'<eoh>': 103167, '<eoa>': 103166, 'nl_id': 13}
token_ids = [sp_model.bos_id()]
human_s = sample['user']
ass_s = sample['bot']
human_ids = sp_model.encode(human_s) + [
special_tokens_map["<eoh>"], special_tokens_map['nl_id']
]
human_ids_ignore = [-token_id for token_id in human_ids]
ass_template_ids = sp_model.encode('<|Assistant|>:')
ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids]
ass_ids = ass_template_ids_ignore + sp_model.encode(ass_s[14:]) + [
special_tokens_map["<eoa>"], special_tokens_map['nl_id']
]
token_ids += human_ids_ignore + ass_ids
if len(token_ids) > 2047:
token_ids = token_ids[:2047]
token_ids += [sp_model.eos_id()]
line = str.encode(json.dumps({'tokens': token_ids}) + '\n')
return line, len(token_ids)
def dump_bin_meta_bin(samples, path, split_ratio=0.1):
"""Dump processed dataset
Args:
samples (dict): Input data sample.
path (str): Path for output dataset.
split_ratio (float): Ratio for validation dataset splitting.
Default to: 0.1.
Returns:
tuple: number of train/valid tokens of processed dataset,
number of train/valid samples of processed dataset.
"""
train_path = osp.join(path, 'train/en/')
valid_path = osp.join(path, 'valid/en/')
train_dir = Path(train_path)
valid_dir = Path(valid_path)
train_dir.mkdir(exist_ok=True, parents=True)
valid_dir.mkdir(exist_ok=True, parents=True)
train_f = open(train_dir.joinpath('dataset.bin'), 'wb')
valid_f = open(valid_dir.joinpath('dataset.bin'), 'wb')
train_tokens = 0
valid_tokens = 0
last_train_position = 0
last_valid_position = 0
train_samples = 0
valid_samples = 0
train_meta = []
valid_meta = []
sample_length = len(samples)
np.random.seed(0)
valid_indices = np.random.choice(
range(sample_length), int(sample_length * split_ratio)).tolist()
count = -1
for line, token_num in samples:
count += 1
if count in valid_indices:
valid_tokens += token_num
valid_f.write(line)
valid_meta.append((last_valid_position, token_num))
last_valid_position += len(line)
valid_samples += 1
else:
train_tokens += token_num
train_f.write(line)
train_meta.append((last_train_position, token_num))
last_train_position += len(line)
train_samples += 1
train_f.close()
valid_f.close()
np.save(open(train_dir.joinpath('dataset.bin.meta'), 'wb'), train_meta)
np.save(open(valid_dir.joinpath('dataset.bin.meta'), "wb"), valid_meta)
return train_tokens, valid_tokens, train_samples, valid_samples
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'dataset_path', type=str, help='path of dataset json file')
parser.add_argument(
'output_path', type=str, help='path of processed dataset')
parser.add_argument('tokenizer_path', type=str, help='path of tokenizer')
parser.add_argument(
'--split_ratio',
type=float,
default=0.1,
help='ratio for validation dataset splitting')
args = parser.parse_args()
sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path)
split_ratio = args.split_ratio
samples = []
dataset = process(args.dataset_path, sp_model)
for sample in tqdm(dataset):
samples.append(sample)
train_tokens, valid_tokens, train_samples, valid_samples = \
dump_bin_meta_bin(samples, args.output_path, args.split_ratio)
print(f'number of train dataset: {train_samples}, '
'number of train dataset token: {train_tokens}')
print(f'number of validation dataset: {valid_samples}, '
'number of validation dataset token: {valid_tokens}')