2023-07-26 08:22:10 +00:00
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from flash_attn.losses.cross_entropy import CrossEntropyLoss as FlashCrossEntropyLoss
|
|
|
|
from torch_scatter import scatter
|
|
|
|
|
|
|
|
from internlm.core.context import ParallelMode
|
|
|
|
from internlm.core.context import global_context as gpc
|
|
|
|
from internlm.utils.parallel import is_no_pp_or_last_stage
|
|
|
|
|
|
|
|
|
|
|
|
class AccPerplex:
|
|
|
|
"""
|
|
|
|
AccPerplex module for calculating model's accuracy and perplexity metrics.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device: The GPU device.
|
|
|
|
tp_pg: The tensor parallel process group.
|
|
|
|
dp_pg: The data parallel process group.
|
|
|
|
tokenizer: For calculating BPB.
|
|
|
|
dataset_types (List[str]): Various data types that will be used in the current training process,
|
|
|
|
such as ['en', 'cn', 'code']. The order of the List should be consistent with the type_id specified
|
|
|
|
in the dataset. Changed parameters need to be used in conjunction with set_current_type_ids().
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, device, tp_pg, dp_pg, tokenizer=None, dataset_types: List[str] = None):
|
|
|
|
self.device = device
|
|
|
|
self.right = torch.Tensor([0]).to(device=device)
|
|
|
|
self.total = torch.Tensor([0]).to(device=device)
|
|
|
|
self.total_log_probs = torch.Tensor([0]).to(device=device)
|
|
|
|
self.tp_pg = tp_pg
|
|
|
|
self.dp_pg = dp_pg
|
|
|
|
self.tp_local_rank = torch.distributed.get_rank(self.tp_pg)
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
self.total_bytes = torch.Tensor([0]).to(device=device).view(1)
|
|
|
|
self.batch_shift = 0
|
|
|
|
self.type_ids = None
|
|
|
|
if dataset_types is not None:
|
|
|
|
self.dataset_types = dataset_types
|
|
|
|
self.total_type_count = len(dataset_types)
|
|
|
|
self.ds_right = torch.zeros(self.total_type_count, dtype=torch.long, device=device)
|
|
|
|
self.ds_tokens = torch.zeros(self.total_type_count, dtype=torch.long, device=device)
|
|
|
|
|
|
|
|
self.loss_with_type_id = LossWithTypeId(device, dp_pg, dataset_types)
|
|
|
|
|
|
|
|
def set_current_type_ids(self, type_ids: torch.Tensor):
|
|
|
|
self.batch_shift = 0
|
|
|
|
self.type_ids = type_ids.cuda()
|
|
|
|
|
|
|
|
def __call__(self, logits, labels):
|
|
|
|
return self.update(logits, labels, type_ids=self.type_ids)
|
|
|
|
|
|
|
|
def update(self, logits, labels, type_ids=None):
|
2023-07-28 08:13:04 +00:00
|
|
|
if gpc.config.model.use_flash_attn:
|
|
|
|
micro_bsz = labels.size(0)
|
|
|
|
else:
|
|
|
|
micro_bsz = 1
|
2023-07-26 08:22:10 +00:00
|
|
|
if type_ids is not None:
|
|
|
|
type_ids = type_ids[self.batch_shift * micro_bsz : (self.batch_shift + 1) * micro_bsz].view(-1)
|
|
|
|
self.batch_shift += 1
|
|
|
|
self.loss_with_type_id.update(logits, labels, type_ids)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
if isinstance(logits, (list, tuple)):
|
|
|
|
logits = logits[0]
|
|
|
|
|
|
|
|
logits = logits.detach().clone()
|
|
|
|
labels = labels.detach().clone()
|
|
|
|
|
|
|
|
if self.tokenizer: # need to calculate bits per bytes
|
|
|
|
sequences = self.tokenizer.decode_ids(labels.tolist())
|
|
|
|
self.total_bytes += sum(map(lambda x: len(x.encode("utf-8")), sequences))
|
|
|
|
|
|
|
|
shift_logits = logits.view(-1, logits.size(-1))
|
|
|
|
shift_labels = labels.view(-1)
|
|
|
|
# There is a shift according to the current rank, because the logits are split
|
|
|
|
pred_shift = self.tp_local_rank * logits.shape[-1]
|
|
|
|
|
|
|
|
logits_max = torch.max(shift_logits, dim=-1)[0]
|
|
|
|
torch.distributed.all_reduce(logits_max, op=torch.distributed.ReduceOp.MAX, group=self.tp_pg)
|
|
|
|
# Determine whether the maximum value of the current local tensor is the global maximum value
|
|
|
|
logits_global = logits_max == torch.max(shift_logits, dim=-1)[0]
|
|
|
|
|
|
|
|
corrects = torch.logical_and(
|
|
|
|
(shift_labels == (shift_logits.argmax(dim=-1) + pred_shift)), logits_global
|
|
|
|
).long()
|
|
|
|
mask = shift_labels.ne(-100).long()
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
ds_acc = scatter(corrects, type_ids, dim=0, reduce="sum")
|
|
|
|
token_num_type = scatter(mask, type_ids, dim=0, reduce="sum")
|
|
|
|
if len(ds_acc) < self.total_type_count:
|
|
|
|
ds_acc = torch.cat([ds_acc, ds_acc.new_zeros(self.total_type_count - len(ds_acc))])
|
|
|
|
token_num_type = torch.cat(
|
|
|
|
[token_num_type, token_num_type.new_zeros(self.total_type_count - len(token_num_type))]
|
|
|
|
)
|
|
|
|
self.ds_tokens += token_num_type
|
|
|
|
sync_tensor = ds_acc
|
|
|
|
torch.distributed.all_reduce(sync_tensor, op=torch.distributed.ReduceOp.SUM, group=self.tp_pg)
|
|
|
|
self.ds_right += sync_tensor.view(-1)
|
|
|
|
|
|
|
|
acc = corrects.sum()
|
|
|
|
torch.distributed.all_reduce(acc, op=torch.distributed.ReduceOp.SUM, group=self.tp_pg)
|
|
|
|
self.right += acc # Masked_fill is not needed here because -100 is not available anyway
|
|
|
|
self.total += mask.sum()
|
|
|
|
|
|
|
|
# Subtract the maximum value.
|
|
|
|
shift_logits = shift_logits.sub(logits_max.unsqueeze(dim=-1))
|
|
|
|
|
|
|
|
# Get the partition's vocab indecies
|
|
|
|
partition_vocab_size = shift_logits.size()[-1]
|
|
|
|
vocab_start_index = partition_vocab_size * self.tp_local_rank
|
|
|
|
vocab_end_index = vocab_start_index + partition_vocab_size
|
|
|
|
|
|
|
|
# Create a mask of valid vocab ids (1 means it needs to be masked).
|
|
|
|
target_mask = (shift_labels < vocab_start_index) | (shift_labels >= vocab_end_index)
|
|
|
|
masked_target = shift_labels - vocab_start_index
|
|
|
|
masked_target[target_mask] = 0
|
|
|
|
|
|
|
|
# Get predicted-logits = logits[target].
|
|
|
|
# For Simplicity, we convert logits to a 2-D tensor with size
|
|
|
|
# [*, partition-vocab-size] and target to a 1-D tensor of size [*].
|
|
|
|
logits_2d = shift_logits.view(-1, partition_vocab_size)
|
|
|
|
masked_target_1d = masked_target.view(-1)
|
|
|
|
arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device)
|
|
|
|
predicted_logits_1d = logits_2d[arange_1d, masked_target_1d]
|
|
|
|
predicted_logits_1d = predicted_logits_1d.clone().contiguous()
|
|
|
|
predicted_logits = predicted_logits_1d.view_as(shift_labels) # bsz x max_len
|
|
|
|
predicted_logits[target_mask] = 0.0
|
|
|
|
# All reduce is needed to get the chunks from other GPUs.
|
|
|
|
torch.distributed.all_reduce(predicted_logits, op=torch.distributed.ReduceOp.SUM, group=self.tp_pg)
|
|
|
|
|
|
|
|
pred_exp_logits = torch.exp(predicted_logits)
|
|
|
|
# Sum of exponential of logits along vocab dimension across all GPUs.
|
|
|
|
sum_exp_logits = torch.exp(shift_logits).sum(dim=-1)
|
|
|
|
torch.distributed.all_reduce(sum_exp_logits, op=torch.distributed.ReduceOp.SUM, group=self.tp_pg)
|
|
|
|
|
|
|
|
total_log_probs = -(pred_exp_logits / sum_exp_logits).log().masked_fill(shift_labels.eq(-100), 0).sum()
|
|
|
|
self.total_log_probs += total_log_probs
|
|
|
|
|
|
|
|
def get_metric(self, reset=True):
|
|
|
|
if is_no_pp_or_last_stage() and self.dp_pg is not None:
|
|
|
|
torch.distributed.all_reduce(self.right, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
torch.distributed.all_reduce(self.total, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
torch.distributed.all_reduce(self.total_log_probs, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
torch.distributed.all_reduce(self.ds_right, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
torch.distributed.all_reduce(self.ds_tokens, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
if self.tokenizer:
|
|
|
|
torch.distributed.all_reduce(self.total_bytes, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
|
|
|
|
acc = round((self.right / self.total).item(), 4)
|
|
|
|
perplexity = round(torch.exp(self.total_log_probs / self.total).item(), 4)
|
|
|
|
bits_per_bytes = round((self.total_log_probs / self.total_bytes).item(), 4) if self.tokenizer else 0
|
|
|
|
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
ds_acc = {}
|
|
|
|
ds_tokens = {}
|
|
|
|
for i in range(self.total_type_count):
|
|
|
|
ds_acc[f"acc/{self.dataset_types[i]}"] = round(
|
|
|
|
(self.ds_right[i].float() / (self.ds_tokens[i].float() + 1e-5)).item(), 4
|
|
|
|
)
|
|
|
|
ds_tokens[f"tokens/{self.dataset_types[i]}"] = self.ds_tokens[i].item()
|
|
|
|
if reset:
|
|
|
|
self.right.fill_(0)
|
|
|
|
self.total.fill_(0)
|
|
|
|
self.total_log_probs.fill_(0)
|
|
|
|
self.total_bytes.fill_(0)
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
self.ds_right.fill_(0)
|
|
|
|
self.ds_tokens.fill_(0)
|
|
|
|
if self.tokenizer is not None:
|
|
|
|
res = {"acc": acc, "perplexity": perplexity, "BPB": bits_per_bytes}
|
|
|
|
else:
|
|
|
|
res = {"acc": acc, "perplexity": perplexity}
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
res.update(ds_acc)
|
|
|
|
res.update(ds_tokens)
|
|
|
|
|
|
|
|
loss_res = self.loss_with_type_id.get_metric()
|
|
|
|
res.update(loss_res)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
class LossWithTypeId:
|
|
|
|
"""
|
|
|
|
Notice the loss value computed here may be not the same with the main info loss,
|
|
|
|
cause loss here is the reduced result of the data parallel.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, device, dp_pg, dataset_types: List[str] = None) -> None:
|
|
|
|
self.device = device
|
|
|
|
self.dp_pg = dp_pg
|
|
|
|
|
|
|
|
self.loss = torch.Tensor([0.0]).to(device=device)
|
|
|
|
self.token_num = torch.Tensor([0.0]).to(device=device)
|
|
|
|
|
|
|
|
if dataset_types is not None:
|
|
|
|
self.dataset_types = dataset_types
|
|
|
|
self.total_type_count = len(dataset_types)
|
|
|
|
self.ds_loss = torch.zeros(self.total_type_count, dtype=torch.float, device=device)
|
|
|
|
self.ds_token_num = torch.zeros(self.total_type_count, dtype=torch.float, device=device)
|
|
|
|
|
|
|
|
self.loss_fn = FlashCrossEntropyLoss(
|
|
|
|
reduction="none", inplace_backward=True, process_group=gpc.get_group(ParallelMode.TENSOR)
|
|
|
|
)
|
|
|
|
|
|
|
|
def update(self, logits, labels, type_ids=None):
|
|
|
|
with torch.no_grad():
|
|
|
|
if isinstance(logits, (list, tuple)):
|
|
|
|
logits = logits[0]
|
|
|
|
logits = logits.contiguous().view(-1, logits.size(-1))
|
|
|
|
labels = labels.contiguous().view(-1)
|
|
|
|
loss_list = self.loss_fn(logits, labels)
|
|
|
|
|
|
|
|
cond = labels != -100
|
|
|
|
real_loss_list = loss_list[cond]
|
|
|
|
self.loss += real_loss_list.sum()
|
|
|
|
self.token_num += real_loss_list.numel()
|
|
|
|
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
type_ids = type_ids.contiguous().view(-1).to(self.device)
|
|
|
|
real_type_ids = type_ids[cond]
|
|
|
|
|
|
|
|
loss_list_type = scatter(real_loss_list, real_type_ids, dim=0, reduce="sum")
|
|
|
|
token_num_type = scatter(torch.ones_like(real_loss_list), real_type_ids, dim=0, reduce="sum")
|
|
|
|
|
|
|
|
if len(loss_list_type) < self.total_type_count:
|
|
|
|
loss_list_type = torch.cat(
|
|
|
|
[loss_list_type, loss_list_type.new_zeros(self.total_type_count - len(loss_list_type))]
|
|
|
|
)
|
|
|
|
token_num_type = torch.cat(
|
|
|
|
[token_num_type, token_num_type.new_zeros(self.total_type_count - len(token_num_type))]
|
|
|
|
)
|
|
|
|
self.ds_loss += loss_list_type
|
|
|
|
self.ds_token_num += token_num_type
|
|
|
|
|
|
|
|
def get_metric(self, reset=True):
|
|
|
|
if is_no_pp_or_last_stage() and self.dp_pg is not None:
|
|
|
|
torch.distributed.all_reduce(self.loss, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
torch.distributed.all_reduce(self.token_num, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
torch.distributed.all_reduce(self.ds_loss, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
torch.distributed.all_reduce(self.ds_token_num, op=torch.distributed.ReduceOp.SUM, group=self.dp_pg)
|
|
|
|
|
|
|
|
loss = round((self.loss / self.token_num).item(), 4)
|
|
|
|
res = {
|
|
|
|
"loss_from_metric": loss,
|
|
|
|
}
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
ds_loss = {}
|
|
|
|
for i in range(self.total_type_count):
|
|
|
|
ds_loss[f"loss/{self.dataset_types[i]}"] = round((self.ds_loss[i] / self.ds_token_num[i]).item(), 4)
|
|
|
|
res.update(ds_loss)
|
|
|
|
|
|
|
|
if reset:
|
|
|
|
self.loss.fill_(0.0)
|
|
|
|
self.token_num.fill_(0.0)
|
|
|
|
if hasattr(self, "total_type_count"):
|
|
|
|
self.ds_loss.fill_(0.0)
|
|
|
|
self.ds_token_num.fill_(0.0)
|
|
|
|
|
|
|
|
return res
|