You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/tensor/comm_spec.py

363 lines
14 KiB

import operator
from enum import Enum
from functools import reduce
import torch
import torch.distributed as dist
from torch.distributed import ReduceOp
__all__ = [
'CollectiveCommPattern',
'CommSpec',
]
def _all_gather(tensor, comm_spec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
]
tensor = tensor
group = process_group
dist.all_gather(tensor_list, tensor, group=group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor, comm_spec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
tensor = tensor
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
def _all_to_all(tensor, comm_spec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor, comm_spec):
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group)
return tensor
class _ReduceGrad(torch.autograd.Function):
"""
A customized communication operation which forward is an identity operation,
backward is all_reduce operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return input_
@staticmethod
def backward(ctx, grad_output):
return _all_reduce(grad_output, ctx.comm_spec), None
class _ReduceInput(torch.autograd.Function):
"""
A customized communication operation which forward is all_reduce operation,
backward is an identity operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_reduce(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
return _all_reduce(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
A customized communication operation which forward is split operation,
backward is an all gather operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _split(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _all_gather(grad_output, ctx.comm_spec), None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
A customized communication operation which forward is an all gather operation,
backward is split operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_gather(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _all_gather(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.comm_spec), None
class _AllToAll(torch.autograd.Function):
"""
A customized communication operation which forward is an all to all operation,
backward is an all to all operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_to_all(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
output = _all_to_all(input_, comm_spec)
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
sharding_spec=comm_spec.sharding_spec,
gather_dim=comm_spec.shard_dim,
shard_dim=comm_spec.gather_dim,
logical_process_axis=comm_spec.logical_process_axis)
ctx.comm_spec = comm_spec_for_backward
return output
@staticmethod
def backward(ctx, grad_outputs):
return _all_to_all(grad_outputs, ctx.comm_spec), None
def reduce_grad(input_, comm_spec):
return _ReduceGrad.apply(input_, comm_spec)
def reduce_input(input_, comm_spec):
return _ReduceInput.apply(input_, comm_spec)
def split_forward_gather_backward(input_, comm_spec):
return _SplitForwardGatherBackward.apply(input_, comm_spec)
def gather_forward_split_backward(input_, comm_spec):
return _GatherForwardSplitBackward.apply(input_, comm_spec)
def all_to_all(input_, comm_spec):
return _AllToAll.apply(input_, comm_spec)
class CollectiveCommPattern(Enum):
GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd'
ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd'
SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd'
ALLREDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd'
IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd'
class CommSpec:
'''
Communication spec is used to record the communication action. It has two main functions:
1. Compute the communication cost which will be used in auto parallel solver.
2. Convert the communication spec to real action which will be used in runtime.
It contains comm_pattern to determine the
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
to determine the buffer shape, and logical_process_axis
Argument:
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action.
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
'''
def __init__(self,
comm_pattern,
sharding_spec,
gather_dim=None,
shard_dim=None,
logical_process_axis=None,
forward_only=False):
self.comm_pattern = comm_pattern
self.sharding_spec = sharding_spec
self.gather_dim = gather_dim
self.shard_dim = shard_dim
self.logical_process_axis = logical_process_axis
self.forward_only = forward_only
if isinstance(self.logical_process_axis, list):
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
self.logical_process_axis = 0
else:
self.device_mesh = self.sharding_spec.device_mesh
def __repr__(self):
res_list = ["CommSpec:("]
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
return ''.join(res_list)
def get_comm_cost(self):
'''
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
compute the communication cost.
For shard operation, it is an on-chip operation, so the communication cost is zero.
'''
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
cost_dict = {}
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
forward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
# give a tiny cost to shard
backward_communication_cost = 10
if self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
forward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
# grad should have same shape as input tensor
# all to all operation has same logical process axis as forward.
backward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
forward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
backward_communication_cost = 0
if self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
forward_communication_cost = 0
backward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
# give a tiny cost to shard
forward_communication_cost = 10
backward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
if self.forward_only:
cost_dict["forward"] = forward_communication_cost
cost_dict["backward"] = 0
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
else:
cost_dict["forward"] = forward_communication_cost
cost_dict["backward"] = backward_communication_cost
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
return cost_dict
def covert_spec_to_action(self, tensor):
'''
Convert CommSpec into runtime action, implement real collection communication to target tensor.
The collection communication action is directed by the CommSpec.
Argument:
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
'''
if self.comm_pattern in pattern_to_func_dict:
tensor = pattern_to_func_dict[self.comm_pattern](tensor, self)
else:
tensor = tensor
return tensor
pattern_to_func_dict = {
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward,
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all,
CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward,
CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input,
CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad,
}