You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_shardformer/test_with_torch_ddp.py

78 lines
2.3 KiB

import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.cluster import DistCoordinator
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def check_shardformer_with_ddp(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
# create shardformer
# ranks: [0, 1, 2, 3]
# tp ranks = [0, 1], [2, 3]
# dp ranks = [0, 2], [1, 3]
dp_process_group_1 = dist.new_group([0, 2])
dp_process_group_2 = dist.new_group([1, 3])
tp_process_group_1 = dist.new_group([0, 1])
tp_process_group_2 = dist.new_group([2, 3])
coordinator = DistCoordinator()
if coordinator.rank in [0, 1]:
tp_process_group = tp_process_group_1
else:
tp_process_group = tp_process_group_2
if coordinator.rank in [0, 2]:
dp_process_group = dp_process_group_1
else:
dp_process_group = dp_process_group_2
shard_config = ShardConfig(tensor_parallel_process_group=tp_process_group, enable_fused_normalization=True)
shardformer = ShardFormer(shard_config=shard_config)
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
# create and shard model
model = model_fn().cuda()
sharded_model = shardformer.optimize(model)
# add ddp
sharded_ddp_model = DDP(sharded_model, process_group=dp_process_group)
# prepare input
data = data_gen_fn()
data = {k: v.cuda() for k, v in data.items()}
# switch to train mode
sharded_ddp_model.train()
# run forward
output = sharded_ddp_model(**data)
loss = loss_fn(output)
# backward
loss.backward()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_gpt2():
spawn(check_shardformer_with_ddp, 4)
if __name__ == "__main__":
test_gpt2()
test_gpt2()