mirror of https://github.com/hpcaitech/ColossalAI
76 lines
2.9 KiB
Python
76 lines
2.9 KiB
Python
import argparse
|
|
import os
|
|
|
|
import tabulate
|
|
from colossal_eval.evaluate.dataset_evaluator import DatasetEvaluator
|
|
from colossal_eval.utils import jdump, jload
|
|
|
|
|
|
def main(args):
|
|
config = jload(args.config)
|
|
|
|
evaluation_results = {dataset["name"]: {} for dataset in config["dataset"]}
|
|
evaluation_results_table = {dataset["name"]: {} for dataset in config["dataset"]}
|
|
evaluator = DatasetEvaluator(args.config, args.evaluation_results_save_path)
|
|
|
|
for dataset_parameter in config["dataset"]:
|
|
dataset_name = dataset_parameter["name"]
|
|
metrics = dataset_parameter["metrics"]
|
|
results_metric_model = {metric: {model["name"]: None for model in config["model"]} for metric in metrics}
|
|
for model in config["model"]:
|
|
model_name = model["name"]
|
|
|
|
data = jload(
|
|
os.path.join(args.inference_results_path, model_name, f"{dataset_name}_inference_results.json")
|
|
)
|
|
results = evaluator.get_evaluation_results(data, dataset_name, model_name, metrics)
|
|
|
|
for metric, score in results.items():
|
|
if metric not in results_metric_model:
|
|
results_metric_model[metric] = {model["name"]: None for model in config["model"]}
|
|
results_metric_model[metric][model_name] = score["ALL"]
|
|
|
|
evaluation_results[dataset_name][model_name] = results
|
|
|
|
evaluation_results_table[dataset_name] = results_metric_model
|
|
|
|
table = []
|
|
header = ["dataset", "metric"] + [model["name"] for model in config["model"]]
|
|
table.append(header)
|
|
|
|
for dataset_parameter in config["dataset"]:
|
|
dataset_name = dataset_parameter["name"]
|
|
metrics = dataset_parameter["metrics"]
|
|
|
|
for metric, model_results in evaluation_results_table[dataset_name].items():
|
|
row = [dataset_name]
|
|
for model, score in model_results.items():
|
|
if len(row) == 1:
|
|
row.extend([metric, "{:.02f}".format(score)])
|
|
else:
|
|
row.append("{:.02f}".format(score))
|
|
|
|
table.append(row)
|
|
|
|
table = tabulate.tabulate(table, headers="firstrow")
|
|
print(table)
|
|
|
|
os.makedirs(args.evaluation_results_save_path, exist_ok=True)
|
|
|
|
with open(os.path.join(args.evaluation_results_save_path, "evaluation_results_table.txt"), "w") as file:
|
|
file.write(table)
|
|
|
|
jdump(evaluation_results, os.path.join(args.evaluation_results_save_path, "evaluation_results.json"))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="ColossalEval evaluation process.")
|
|
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
|
|
parser.add_argument("--inference_results_path", type=str, default=None, help="path to inference results")
|
|
parser.add_argument(
|
|
"--evaluation_results_save_path", type=str, default=None, help="path to save evaluation results"
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|