ColossalAI/tests/test_zero/low_level_zero/test_zero_init.py

62 lines
1.9 KiB
Python

from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import colossalai
from colossalai.tensor import ProcessGroup
from colossalai.utils import free_port, get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.zero import LowLevelZeroOptimizer
class TestModel(nn.Module):
def __init__(self):
super(TestModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_init():
dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2)
model1 = TestModel().cuda()
with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg):
model2 = TestModel()
optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1))
optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1))
assert optimizer1._local_rank == optimizer2._local_rank
assert optimizer1._world_size == optimizer2._world_size
assert optimizer1._dp_global_ranks == optimizer2._dp_global_ranks
mp_group1 = optimizer1._mp_torch_group
mp_group2 = optimizer2._mp_torch_group
assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2)
assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2)
def run_dist(rank, world_size, port):
config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d')))
colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_init()
@pytest.mark.dist
def test_zero_init():
world_size = 4
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_init()