ColossalAI/tests/test_autochunk/test_evoformer_codegen.py

165 lines
5.1 KiB
Python

from functools import partial
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
try:
from fastfold.model.nn.evoformer import EvoformerBlock
HAS_REPO = True
except:
HAS_REPO = False
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx._compatibility import is_compatible_with_meta
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if CODEGEN_AVAILABLE and is_compatible_with_meta():
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair, node_mask, pair_mask):
# for memory test
# torch.cuda.reset_peak_memory_stats()
# now_mem = torch.cuda.memory_allocated() / 1024**2
# with torch.no_grad():
# node1 = node.clone()
# pair1 = pair.clone()
# gm(node1, pair1)
# new_now_mem = torch.cuda.memory_allocated() / 1024**2
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
# print(
# "autochunk now mem:%.2f max mem:%.2f"
# % (new_now_mem - now_mem, new_max_mem - now_mem)
# )
# test forward
model = model.cuda()
with torch.no_grad():
non_fx_out = model(node, pair, node_mask, pair_mask)
fx_out = gm(node, pair, node_mask, pair_mask)
assert torch.allclose(non_fx_out[0], fx_out[0],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0]))
assert torch.allclose(non_fx_out[1], fx_out[1],
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1]))
def _build_openfold():
model = EvoformerBlock(
c_m=256,
c_z=128,
c_hidden_msa_att=32,
c_hidden_opm=32,
c_hidden_mul=128,
c_hidden_pair_att=32,
no_heads_msa=8,
no_heads_pair=4,
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.15,
inf=1e4,
eps=1e-4,
is_multimer=False,
).eval().cuda()
return model
def _test_evoformer_codegen(rank, msa_len, pair_len, max_memory):
# launch colossalai
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = _build_openfold()
node = torch.randn(1, msa_len, pair_len, 256).cuda()
node_mask = torch.randn(1, msa_len, pair_len).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={
"m": node.to(torch.device("meta")),
"z": pair.to(torch.device("meta")),
"msa_mask": node_mask.to(torch.device("meta")),
"pair_mask": pair_mask.to(torch.device("meta")),
},
concrete_args={
"chunk_size": None,
"_mask_trans": True,
},
)
interp = MetaInfoProp(meta_graph)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"),
MetaTensor(pair, fake_device="cuda:0"),
MetaTensor(node_mask, fake_device="cuda:0"),
MetaTensor(pair_mask, fake_device="cuda:0"),
)
# codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model,
meta_args={
"m": node.to(torch.device("meta")),
"z": pair.to(torch.device("meta")),
"msa_mask": node_mask.to(torch.device("meta")),
"pair_mask": pair_mask.to(torch.device("meta")),
},
concrete_args={
"chunk_size": None,
"_mask_trans": True,
},
)
# graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert we have inserted chunk
code = graph.python_code("self").src
assert "chunk_size" in code
# print(code)
_test_fwd(model, gm, node, pair, node_mask, pair_mask)
gpc.destroy()
@pytest.mark.skipif(
not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
@pytest.mark.parametrize("msa_len", [32])
@pytest.mark.parametrize("pair_len", [64])
def test_evoformer_codegen(msa_len, pair_len, max_memory):
run_func = partial(
_test_evoformer_codegen,
msa_len=msa_len,
pair_len=pair_len,
max_memory=max_memory,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
_test_evoformer_codegen(0, 32, 64, 25)