mirror of https://github.com/hpcaitech/ColossalAI
1394 lines
53 KiB
Python
1394 lines
53 KiB
Python
"""
|
||
The ChatGLM2-6B License
|
||
|
||
1. Definitions
|
||
|
||
“Licensor” means the ChatGLM2-6B Model Team that distributes its Software.
|
||
|
||
“Software” means the ChatGLM2-6B model parameters made available under this license.
|
||
|
||
2. License Grant
|
||
|
||
Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software solely for your non-commercial research purposes.
|
||
|
||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||
|
||
3. Restriction
|
||
|
||
You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any commercial, military, or illegal purposes.
|
||
|
||
You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
|
||
|
||
4. Disclaimer
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
5. Limitation of Liability
|
||
|
||
EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||
|
||
6. Dispute Resolution
|
||
|
||
This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
|
||
|
||
Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at glm-130b@googlegroups.com.
|
||
"""
|
||
|
||
""" PyTorch ChatGLM model. """
|
||
|
||
import copy
|
||
import math
|
||
import sys
|
||
import warnings
|
||
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import torch.utils.checkpoint
|
||
from torch import nn
|
||
from torch.nn import CrossEntropyLoss, LayerNorm
|
||
from torch.nn.utils import skip_init
|
||
from transformers.generation.logits_process import LogitsProcessor
|
||
from transformers.generation.utils import GenerationConfig, LogitsProcessorList, ModelOutput, StoppingCriteriaList
|
||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
from transformers.modeling_utils import PreTrainedModel
|
||
from transformers.utils import logging
|
||
|
||
from .configuration_chatglm import ChatGLMConfig
|
||
|
||
# flags required to enable jit fusion kernels
|
||
|
||
if sys.platform != "darwin":
|
||
torch._C._jit_set_profiling_mode(False)
|
||
torch._C._jit_set_profiling_executor(False)
|
||
torch._C._jit_override_can_fuse_on_cpu(True)
|
||
torch._C._jit_override_can_fuse_on_gpu(True)
|
||
|
||
logger = logging.get_logger(__name__)
|
||
|
||
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
|
||
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
||
|
||
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||
"THUDM/chatglm2-6b",
|
||
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm
|
||
]
|
||
|
||
|
||
def default_init(cls, *args, **kwargs):
|
||
return cls(*args, **kwargs)
|
||
|
||
|
||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||
scores.zero_()
|
||
scores[..., 5] = 5e4
|
||
return scores
|
||
|
||
|
||
class PrefixEncoder(torch.nn.Module):
|
||
"""
|
||
The torch.nn model to encode the prefix
|
||
Input shape: (batch-size, prefix-length)
|
||
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
||
"""
|
||
|
||
def __init__(self, config: ChatGLMConfig):
|
||
super().__init__()
|
||
self.prefix_projection = config.prefix_projection
|
||
if self.prefix_projection:
|
||
# Use a two-layer MLP to encode the prefix
|
||
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
||
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
||
self.trans = torch.nn.Sequential(
|
||
torch.nn.Linear(kv_size, config.hidden_size),
|
||
torch.nn.Tanh(),
|
||
torch.nn.Linear(config.hidden_size, kv_size),
|
||
)
|
||
else:
|
||
self.embedding = torch.nn.Embedding(
|
||
config.pre_seq_len,
|
||
config.num_layers * config.kv_channels * config.multi_query_group_num * 2,
|
||
)
|
||
|
||
def forward(self, prefix: torch.Tensor):
|
||
if self.prefix_projection:
|
||
prefix_tokens = self.embedding(prefix)
|
||
past_key_values = self.trans(prefix_tokens)
|
||
else:
|
||
past_key_values = self.embedding(prefix)
|
||
return past_key_values
|
||
|
||
|
||
def split_tensor_along_last_dim(
|
||
tensor: torch.Tensor,
|
||
num_partitions: int,
|
||
contiguous_split_chunks: bool = False,
|
||
) -> List[torch.Tensor]:
|
||
"""Split a tensor along its last dimension.
|
||
|
||
Arguments:
|
||
tensor: input tensor.
|
||
num_partitions: number of partitions to split the tensor
|
||
contiguous_split_chunks: If True, make each chunk contiguous
|
||
in memory.
|
||
|
||
Returns:
|
||
A list of Tensors
|
||
"""
|
||
# Get the size and dimension.
|
||
last_dim = tensor.dim() - 1
|
||
last_dim_size = tensor.size()[last_dim] // num_partitions
|
||
# Split.
|
||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||
# Note: torch.split does not create contiguous tensors by default.
|
||
if contiguous_split_chunks:
|
||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||
|
||
return tensor_list
|
||
|
||
|
||
class RotaryEmbedding(nn.Module):
|
||
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
||
super().__init__()
|
||
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
||
self.register_buffer("inv_freq", inv_freq)
|
||
self.dim = dim
|
||
self.original_impl = original_impl
|
||
|
||
def forward_impl(
|
||
self,
|
||
seq_len: int,
|
||
n_elem: int,
|
||
dtype: torch.dtype,
|
||
device: torch.device,
|
||
base: int = 10000,
|
||
):
|
||
"""Enhanced Transformer with Rotary Position Embedding.
|
||
|
||
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
||
transformers/rope/__init__.py. MIT License:
|
||
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
||
"""
|
||
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
||
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
|
||
|
||
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
||
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
|
||
|
||
# Calculate the product of position index and $\theta_i$
|
||
idx_theta = torch.outer(seq_idx, theta).float()
|
||
|
||
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
||
|
||
# this is to mimic the behavior of complex32, else we will get different results
|
||
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
||
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
||
return cache
|
||
|
||
def forward(self, max_seq_len, offset=0):
|
||
return self.forward_impl(
|
||
max_seq_len,
|
||
self.dim,
|
||
dtype=self.inv_freq.dtype,
|
||
device=self.inv_freq.device,
|
||
)
|
||
|
||
|
||
@torch.jit.script
|
||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||
# x: [sq, b, np, hn]
|
||
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||
rot_dim = rope_cache.shape[-2] * 2
|
||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||
# truncate to support variable sizes
|
||
rope_cache = rope_cache[:sq]
|
||
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
||
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
||
x_out2 = torch.stack(
|
||
[
|
||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||
],
|
||
-1,
|
||
)
|
||
x_out2 = x_out2.flatten(3)
|
||
return torch.cat((x_out2, x_pass), dim=-1)
|
||
|
||
|
||
class RMSNorm(torch.nn.Module):
|
||
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
||
super().__init__()
|
||
self.elementwise_affine = True
|
||
self.normalized_shape = normalized_shape
|
||
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, device=device, dtype=dtype))
|
||
self.eps = eps
|
||
|
||
def forward(self, hidden_states: torch.Tensor):
|
||
input_dtype = hidden_states.dtype
|
||
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
||
return (self.weight * hidden_states).to(input_dtype)
|
||
|
||
|
||
class CoreAttention(torch.nn.Module):
|
||
def __init__(self, config: ChatGLMConfig, layer_number):
|
||
super(CoreAttention, self).__init__()
|
||
|
||
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
||
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
||
if self.apply_query_key_layer_scaling:
|
||
self.attention_softmax_in_fp32 = True
|
||
self.layer_number = max(1, layer_number)
|
||
|
||
projection_size = config.kv_channels * config.num_attention_heads
|
||
|
||
# Per attention head and per partition values.
|
||
self.hidden_size_per_partition = projection_size
|
||
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
||
self.num_attention_heads_per_partition = config.num_attention_heads
|
||
|
||
coeff = None
|
||
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
||
if self.apply_query_key_layer_scaling:
|
||
coeff = self.layer_number
|
||
self.norm_factor *= coeff
|
||
self.coeff = coeff
|
||
|
||
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
||
|
||
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
||
pytorch_major_version = int(torch.__version__.split(".")[0])
|
||
if pytorch_major_version >= 2:
|
||
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
||
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
||
query_layer, key_layer, value_layer, is_causal=True
|
||
)
|
||
else:
|
||
if attention_mask is not None:
|
||
attention_mask = ~attention_mask
|
||
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
||
query_layer, key_layer, value_layer, attention_mask
|
||
)
|
||
context_layer = context_layer.permute(2, 0, 1, 3)
|
||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||
else:
|
||
# Raw attention scores
|
||
|
||
# [b, np, sq, sk]
|
||
output_size = (
|
||
query_layer.size(1),
|
||
query_layer.size(2),
|
||
query_layer.size(0),
|
||
key_layer.size(0),
|
||
)
|
||
|
||
# [sq, b, np, hn] -> [sq, b * np, hn]
|
||
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
||
# [sk, b, np, hn] -> [sk, b * np, hn]
|
||
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
||
|
||
# preallocating input tensor: [b * np, sq, sk]
|
||
matmul_input_buffer = torch.empty(
|
||
output_size[0] * output_size[1],
|
||
output_size[2],
|
||
output_size[3],
|
||
dtype=query_layer.dtype,
|
||
device=query_layer.device,
|
||
)
|
||
|
||
# Raw attention scores. [b * np, sq, sk]
|
||
matmul_result = torch.baddbmm(
|
||
matmul_input_buffer,
|
||
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
||
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
||
beta=0.0,
|
||
alpha=(1.0 / self.norm_factor),
|
||
)
|
||
|
||
# change view to [b, np, sq, sk]
|
||
attention_scores = matmul_result.view(*output_size)
|
||
|
||
# ===========================
|
||
# Attention probs and dropout
|
||
# ===========================
|
||
|
||
# attention scores and attention mask [b, np, sq, sk]
|
||
if self.attention_softmax_in_fp32:
|
||
attention_scores = attention_scores.float()
|
||
if self.coeff is not None:
|
||
attention_scores = attention_scores * self.coeff
|
||
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
||
attention_mask = torch.ones(
|
||
output_size[0],
|
||
1,
|
||
output_size[2],
|
||
output_size[3],
|
||
device=attention_scores.device,
|
||
dtype=torch.bool,
|
||
)
|
||
attention_mask.tril_()
|
||
attention_mask = ~attention_mask
|
||
if attention_mask is not None:
|
||
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
||
attention_probs = F.softmax(attention_scores, dim=-1)
|
||
attention_probs = attention_probs.type_as(value_layer)
|
||
|
||
# This is actually dropping out entire tokens to attend to, which might
|
||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
attention_probs = self.attention_dropout(attention_probs)
|
||
# =========================
|
||
# Context layer. [sq, b, hp]
|
||
# =========================
|
||
|
||
# value_layer -> context layer.
|
||
# [sk, b, np, hn] --> [b, np, sq, hn]
|
||
|
||
# context layer shape: [b, np, sq, hn]
|
||
output_size = (
|
||
value_layer.size(1),
|
||
value_layer.size(2),
|
||
query_layer.size(0),
|
||
value_layer.size(3),
|
||
)
|
||
# change view [sk, b * np, hn]
|
||
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
||
# change view [b * np, sq, sk]
|
||
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
||
# matmul: [b * np, sq, hn]
|
||
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
||
# change view [b, np, sq, hn]
|
||
context_layer = context_layer.view(*output_size)
|
||
# [b, np, sq, hn] --> [sq, b, np, hn]
|
||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||
# [sq, b, np, hn] --> [sq, b, hp]
|
||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
||
return context_layer
|
||
|
||
|
||
class SelfAttention(torch.nn.Module):
|
||
"""Parallel self-attention layer abstract class.
|
||
|
||
Self-attention layer takes input with size [s, b, h]
|
||
and returns output of the same size.
|
||
"""
|
||
|
||
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
||
super(SelfAttention, self).__init__()
|
||
self.layer_number = max(1, layer_number)
|
||
self.projection_size = config.kv_channels * config.num_attention_heads
|
||
# Per attention head and per partition values.
|
||
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
||
self.num_attention_heads_per_partition = config.num_attention_heads
|
||
self.multi_query_attention = config.multi_query_attention
|
||
self.qkv_hidden_size = 3 * self.projection_size
|
||
if self.multi_query_attention:
|
||
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
||
self.qkv_hidden_size = (
|
||
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
||
)
|
||
self.query_key_value = nn.Linear(
|
||
config.hidden_size,
|
||
self.qkv_hidden_size,
|
||
bias=config.add_bias_linear or config.add_qkv_bias,
|
||
device=device,
|
||
**_config_to_kwargs(config),
|
||
)
|
||
|
||
self.core_attention = CoreAttention(config, self.layer_number)
|
||
# Output.
|
||
self.dense = nn.Linear(
|
||
self.projection_size,
|
||
config.hidden_size,
|
||
bias=config.add_bias_linear,
|
||
device=device,
|
||
**_config_to_kwargs(config),
|
||
)
|
||
|
||
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
||
if self.multi_query_attention:
|
||
num_attention_heads = self.num_multi_query_groups_per_partition
|
||
else:
|
||
num_attention_heads = self.num_attention_heads_per_partition
|
||
return torch.empty(
|
||
inference_max_sequence_len,
|
||
batch_size,
|
||
num_attention_heads,
|
||
self.hidden_size_per_attention_head,
|
||
dtype=dtype,
|
||
device=device,
|
||
)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_cache=None,
|
||
use_cache=True,
|
||
):
|
||
# hidden_states: [sq, b, h]
|
||
|
||
# =================================================
|
||
# Pre-allocate memory for key-values for inference.
|
||
# =================================================
|
||
# =====================
|
||
# Query, Key, and Value
|
||
# =====================
|
||
|
||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
||
mixed_x_layer = self.query_key_value(hidden_states)
|
||
if self.multi_query_attention:
|
||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||
[
|
||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||
],
|
||
dim=-1,
|
||
)
|
||
query_layer = query_layer.view(
|
||
query_layer.size()[:-1]
|
||
+ (
|
||
self.num_attention_heads_per_partition,
|
||
self.hidden_size_per_attention_head,
|
||
)
|
||
)
|
||
key_layer = key_layer.view(
|
||
key_layer.size()[:-1]
|
||
+ (
|
||
self.num_multi_query_groups_per_partition,
|
||
self.hidden_size_per_attention_head,
|
||
)
|
||
)
|
||
value_layer = value_layer.view(
|
||
value_layer.size()[:-1]
|
||
+ (
|
||
self.num_multi_query_groups_per_partition,
|
||
self.hidden_size_per_attention_head,
|
||
)
|
||
)
|
||
else:
|
||
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
||
self.num_attention_heads_per_partition,
|
||
3 * self.hidden_size_per_attention_head,
|
||
)
|
||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||
|
||
# apply relative positional encoding (rotary embedding)
|
||
if rotary_pos_emb is not None:
|
||
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
||
|
||
# adjust key and value for inference
|
||
if kv_cache is not None:
|
||
cache_k, cache_v = kv_cache
|
||
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
||
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
||
if use_cache:
|
||
kv_cache = (key_layer, value_layer)
|
||
else:
|
||
kv_cache = None
|
||
|
||
if self.multi_query_attention:
|
||
key_layer = key_layer.unsqueeze(-2)
|
||
key_layer = key_layer.expand(
|
||
-1,
|
||
-1,
|
||
-1,
|
||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||
-1,
|
||
)
|
||
key_layer = key_layer.contiguous().view(
|
||
key_layer.size()[:2]
|
||
+ (
|
||
self.num_attention_heads_per_partition,
|
||
self.hidden_size_per_attention_head,
|
||
)
|
||
)
|
||
value_layer = value_layer.unsqueeze(-2)
|
||
value_layer = value_layer.expand(
|
||
-1,
|
||
-1,
|
||
-1,
|
||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||
-1,
|
||
)
|
||
value_layer = value_layer.contiguous().view(
|
||
value_layer.size()[:2]
|
||
+ (
|
||
self.num_attention_heads_per_partition,
|
||
self.hidden_size_per_attention_head,
|
||
)
|
||
)
|
||
|
||
# ==================================
|
||
# core attention computation
|
||
# ==================================
|
||
|
||
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
||
|
||
# =================
|
||
# Output. [sq, b, h]
|
||
# =================
|
||
output = self.dense(context_layer)
|
||
|
||
return output, kv_cache
|
||
|
||
|
||
def _config_to_kwargs(args):
|
||
common_kwargs = {
|
||
"dtype": args.torch_dtype,
|
||
}
|
||
return common_kwargs
|
||
|
||
|
||
class MLP(torch.nn.Module):
|
||
"""MLP.
|
||
|
||
MLP will take the input with h hidden state, project it to 4*h
|
||
hidden dimension, perform nonlinear transformation, and project the
|
||
state back into h hidden dimension.
|
||
"""
|
||
|
||
def __init__(self, config: ChatGLMConfig, device=None):
|
||
super(MLP, self).__init__()
|
||
|
||
self.add_bias = config.add_bias_linear
|
||
|
||
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
||
self.dense_h_to_4h = nn.Linear(
|
||
config.hidden_size,
|
||
config.ffn_hidden_size * 2,
|
||
bias=self.add_bias,
|
||
device=device,
|
||
**_config_to_kwargs(config),
|
||
)
|
||
|
||
def swiglu(x):
|
||
x = torch.chunk(x, 2, dim=-1)
|
||
return F.silu(x[0]) * x[1]
|
||
|
||
self.activation_func = swiglu
|
||
|
||
# Project back to h.
|
||
self.dense_4h_to_h = nn.Linear(
|
||
config.ffn_hidden_size,
|
||
config.hidden_size,
|
||
bias=self.add_bias,
|
||
device=device,
|
||
**_config_to_kwargs(config),
|
||
)
|
||
|
||
def forward(self, hidden_states):
|
||
# [s, b, 4hp]
|
||
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
||
intermediate_parallel = self.activation_func(intermediate_parallel)
|
||
# [s, b, h]
|
||
output = self.dense_4h_to_h(intermediate_parallel)
|
||
return output
|
||
|
||
|
||
class GLMBlock(torch.nn.Module):
|
||
"""A single transformer layer.
|
||
|
||
Transformer layer takes input with size [s, b, h] and returns an
|
||
output of the same size.
|
||
"""
|
||
|
||
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
||
super(GLMBlock, self).__init__()
|
||
self.layer_number = layer_number
|
||
|
||
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
||
|
||
self.fp32_residual_connection = config.fp32_residual_connection
|
||
|
||
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
||
# Layernorm on the input data.
|
||
self.input_layernorm = LayerNormFunc(
|
||
config.hidden_size,
|
||
eps=config.layernorm_epsilon,
|
||
device=device,
|
||
dtype=config.torch_dtype,
|
||
)
|
||
|
||
# Self attention.
|
||
self.self_attention = SelfAttention(config, layer_number, device=device)
|
||
self.hidden_dropout = config.hidden_dropout
|
||
|
||
# Layernorm on the attention output
|
||
self.post_attention_layernorm = LayerNormFunc(
|
||
config.hidden_size,
|
||
eps=config.layernorm_epsilon,
|
||
device=device,
|
||
dtype=config.torch_dtype,
|
||
)
|
||
|
||
# MLP
|
||
self.mlp = MLP(config, device=device)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_cache=None,
|
||
use_cache=True,
|
||
):
|
||
# hidden_states: [s, b, h]
|
||
|
||
# Layer norm at the beginning of the transformer layer.
|
||
layernorm_output = self.input_layernorm(hidden_states)
|
||
# Self attention.
|
||
attention_output, kv_cache = self.self_attention(
|
||
layernorm_output,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_cache=kv_cache,
|
||
use_cache=use_cache,
|
||
)
|
||
|
||
# Residual connection.
|
||
if self.apply_residual_connection_post_layernorm:
|
||
residual = layernorm_output
|
||
else:
|
||
residual = hidden_states
|
||
|
||
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
||
layernorm_input = residual + layernorm_input
|
||
|
||
# Layer norm post the self attention.
|
||
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
||
|
||
# MLP.
|
||
mlp_output = self.mlp(layernorm_output)
|
||
|
||
# Second residual connection.
|
||
if self.apply_residual_connection_post_layernorm:
|
||
residual = layernorm_output
|
||
else:
|
||
residual = layernorm_input
|
||
|
||
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
||
output = residual + output
|
||
|
||
return output, kv_cache
|
||
|
||
|
||
class GLMTransformer(torch.nn.Module):
|
||
"""Transformer class."""
|
||
|
||
def __init__(self, config: ChatGLMConfig, device=None):
|
||
super(GLMTransformer, self).__init__()
|
||
|
||
self.fp32_residual_connection = config.fp32_residual_connection
|
||
self.post_layer_norm = config.post_layer_norm
|
||
|
||
# Number of layers.
|
||
self.num_layers = config.num_layers
|
||
|
||
# Transformer layers.
|
||
def build_layer(layer_number):
|
||
return GLMBlock(config, layer_number, device=device)
|
||
|
||
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
||
|
||
if self.post_layer_norm:
|
||
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
||
# Final layer norm before output.
|
||
self.final_layernorm = LayerNormFunc(
|
||
config.hidden_size,
|
||
eps=config.layernorm_epsilon,
|
||
device=device,
|
||
dtype=config.torch_dtype,
|
||
)
|
||
|
||
self.gradient_checkpointing = False
|
||
|
||
def _get_layer(self, layer_number):
|
||
return self.layers[layer_number]
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_caches=None,
|
||
use_cache: Optional[bool] = True,
|
||
output_hidden_states: Optional[bool] = False,
|
||
):
|
||
if not kv_caches:
|
||
kv_caches = [None for _ in range(self.num_layers)]
|
||
presents = () if use_cache else None
|
||
if self.gradient_checkpointing and self.training:
|
||
if use_cache:
|
||
logger.warning_once(
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
)
|
||
use_cache = False
|
||
|
||
all_self_attentions = None
|
||
all_hidden_states = () if output_hidden_states else None
|
||
for index in range(self.num_layers):
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
||
layer = self._get_layer(index)
|
||
if self.gradient_checkpointing and self.training:
|
||
layer_ret = torch.utils.checkpoint.checkpoint(
|
||
layer,
|
||
hidden_states,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_caches[index],
|
||
use_cache,
|
||
)
|
||
else:
|
||
layer_ret = layer(
|
||
hidden_states,
|
||
attention_mask,
|
||
rotary_pos_emb,
|
||
kv_cache=kv_caches[index],
|
||
use_cache=use_cache,
|
||
)
|
||
hidden_states, kv_cache = layer_ret
|
||
if use_cache:
|
||
presents = presents + (kv_cache,)
|
||
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
||
# Final layer norm.
|
||
if self.post_layer_norm:
|
||
hidden_states = self.final_layernorm(hidden_states)
|
||
|
||
return hidden_states, presents, all_hidden_states, all_self_attentions
|
||
|
||
|
||
class ChatGLMPreTrainedModel(PreTrainedModel):
|
||
"""
|
||
An abstract class to handle weights initialization and
|
||
a simple interface for downloading and loading pretrained models.
|
||
"""
|
||
|
||
is_parallelizable = False
|
||
supports_gradient_checkpointing = True
|
||
config_class = ChatGLMConfig
|
||
base_model_prefix = "transformer"
|
||
_no_split_modules = ["GLMBlock"]
|
||
|
||
def _init_weights(self, module: nn.Module):
|
||
"""Initialize the weights."""
|
||
return
|
||
|
||
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
||
batch_size, seq_length = input_ids.shape
|
||
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
||
full_attention_mask.tril_()
|
||
past_length = 0
|
||
if past_key_values:
|
||
past_length = past_key_values[0][0].shape[0]
|
||
if past_length:
|
||
full_attention_mask = torch.cat(
|
||
(
|
||
torch.ones(batch_size, seq_length, past_length, device=input_ids.device),
|
||
full_attention_mask,
|
||
),
|
||
dim=-1,
|
||
)
|
||
if padding_mask is not None:
|
||
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
||
if not past_length and padding_mask is not None:
|
||
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
||
full_attention_mask = (full_attention_mask < 0.5).bool()
|
||
full_attention_mask.unsqueeze_(1)
|
||
return full_attention_mask
|
||
|
||
def get_position_ids(self, input_ids, device):
|
||
batch_size, seq_length = input_ids.shape
|
||
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
||
return position_ids
|
||
|
||
def _set_gradient_checkpointing(self, module, value=False):
|
||
if isinstance(module, GLMTransformer):
|
||
module.gradient_checkpointing = value
|
||
|
||
|
||
class Embedding(torch.nn.Module):
|
||
"""Language model embeddings."""
|
||
|
||
def __init__(self, config: ChatGLMConfig, device=None):
|
||
super(Embedding, self).__init__()
|
||
|
||
self.hidden_size = config.hidden_size
|
||
# Word embeddings (parallel).
|
||
self.word_embeddings = nn.Embedding(
|
||
config.padded_vocab_size,
|
||
self.hidden_size,
|
||
dtype=config.torch_dtype,
|
||
device=device,
|
||
)
|
||
self.fp32_residual_connection = config.fp32_residual_connection
|
||
|
||
def forward(self, input_ids):
|
||
# Embeddings.
|
||
words_embeddings = self.word_embeddings(input_ids)
|
||
embeddings = words_embeddings
|
||
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
||
embeddings = embeddings.transpose(0, 1).contiguous()
|
||
# If the input flag for fp32 residual connection is set, convert for float.
|
||
if self.fp32_residual_connection:
|
||
embeddings = embeddings.float()
|
||
return embeddings
|
||
|
||
|
||
class ChatGLMModel(ChatGLMPreTrainedModel):
|
||
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
||
super().__init__(config)
|
||
if empty_init:
|
||
init_method = skip_init
|
||
else:
|
||
init_method = default_init
|
||
init_kwargs = {}
|
||
if device is not None:
|
||
init_kwargs["device"] = device
|
||
self.embedding = init_method(Embedding, config, **init_kwargs)
|
||
self.num_layers = config.num_layers
|
||
self.multi_query_group_num = config.multi_query_group_num
|
||
self.kv_channels = config.kv_channels
|
||
|
||
# Rotary positional embeddings
|
||
self.seq_length = config.seq_length
|
||
rotary_dim = (
|
||
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
||
)
|
||
|
||
self.rotary_pos_emb = RotaryEmbedding(
|
||
rotary_dim // 2,
|
||
# original_impl=config.original_rope, # config has no attribute original_rope
|
||
device=device,
|
||
dtype=config.torch_dtype,
|
||
)
|
||
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
||
self.output_layer = init_method(
|
||
nn.Linear,
|
||
config.hidden_size,
|
||
config.padded_vocab_size,
|
||
bias=False,
|
||
dtype=config.torch_dtype,
|
||
**init_kwargs,
|
||
)
|
||
self.pre_seq_len = config.pre_seq_len
|
||
self.prefix_projection = config.prefix_projection
|
||
if self.pre_seq_len is not None:
|
||
for param in self.parameters():
|
||
param.requires_grad = False
|
||
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
||
self.prefix_encoder = PrefixEncoder(config)
|
||
self.dropout = torch.nn.Dropout(0.1)
|
||
|
||
def get_input_embeddings(self):
|
||
return self.embedding.word_embeddings
|
||
|
||
def get_prompt(self, batch_size, device, dtype=torch.half):
|
||
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
||
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
||
past_key_values = past_key_values.view(
|
||
batch_size,
|
||
self.pre_seq_len,
|
||
self.num_layers * 2,
|
||
self.multi_query_group_num,
|
||
self.kv_channels,
|
||
)
|
||
# seq_len, b, nh, hidden_size
|
||
past_key_values = self.dropout(past_key_values)
|
||
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
||
return past_key_values
|
||
|
||
def forward(
|
||
self,
|
||
input_ids,
|
||
position_ids: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.BoolTensor] = None,
|
||
full_attention_mask: Optional[torch.BoolTensor] = None,
|
||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
inputs_embeds: Optional[torch.Tensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
):
|
||
output_hidden_states = (
|
||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
)
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
batch_size, seq_length = input_ids.shape
|
||
|
||
if inputs_embeds is None:
|
||
inputs_embeds = self.embedding(input_ids)
|
||
|
||
if self.pre_seq_len is not None:
|
||
if past_key_values is None:
|
||
past_key_values = self.get_prompt(
|
||
batch_size=batch_size,
|
||
device=input_ids.device,
|
||
dtype=inputs_embeds.dtype,
|
||
)
|
||
if attention_mask is not None:
|
||
attention_mask = torch.cat(
|
||
[
|
||
attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
||
attention_mask,
|
||
],
|
||
dim=-1,
|
||
)
|
||
|
||
if full_attention_mask is None:
|
||
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
||
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
||
|
||
# Rotary positional embeddings
|
||
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
||
if position_ids is not None:
|
||
rotary_pos_emb = rotary_pos_emb[position_ids]
|
||
else:
|
||
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
||
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
||
|
||
# Run encoder.
|
||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||
inputs_embeds,
|
||
full_attention_mask,
|
||
rotary_pos_emb=rotary_pos_emb,
|
||
kv_caches=past_key_values,
|
||
use_cache=use_cache,
|
||
output_hidden_states=output_hidden_states,
|
||
)
|
||
|
||
if not return_dict:
|
||
return tuple(
|
||
v
|
||
for v in [
|
||
hidden_states,
|
||
presents,
|
||
all_hidden_states,
|
||
all_self_attentions,
|
||
]
|
||
if v is not None
|
||
)
|
||
|
||
return BaseModelOutputWithPast(
|
||
last_hidden_state=hidden_states,
|
||
past_key_values=presents,
|
||
hidden_states=all_hidden_states,
|
||
attentions=all_self_attentions,
|
||
)
|
||
|
||
def quantize(self, weight_bit_width: int):
|
||
from .quantization import quantize
|
||
|
||
quantize(self.encoder, weight_bit_width)
|
||
return self
|
||
|
||
|
||
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
||
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
||
super().__init__(config)
|
||
|
||
self.max_sequence_length = config.max_length
|
||
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
||
self.config = config
|
||
self.quantized = False
|
||
|
||
if self.config.quantization_bit:
|
||
self.quantize(self.config.quantization_bit, empty_init=True)
|
||
|
||
def _update_model_kwargs_for_generation(
|
||
self,
|
||
outputs: ModelOutput,
|
||
model_kwargs: Dict[str, Any],
|
||
is_encoder_decoder: bool = False,
|
||
standardize_cache_format: bool = False,
|
||
) -> Dict[str, Any]:
|
||
# update past_key_values
|
||
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
||
outputs, standardize_cache_format=standardize_cache_format
|
||
)
|
||
|
||
# update attention mask
|
||
if "attention_mask" in model_kwargs:
|
||
attention_mask = model_kwargs["attention_mask"]
|
||
model_kwargs["attention_mask"] = torch.cat(
|
||
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))],
|
||
dim=-1,
|
||
)
|
||
|
||
# update position ids
|
||
if "position_ids" in model_kwargs:
|
||
position_ids = model_kwargs["position_ids"]
|
||
new_position_id = position_ids[..., -1:].clone()
|
||
new_position_id += 1
|
||
model_kwargs["position_ids"] = torch.cat([position_ids, new_position_id], dim=-1)
|
||
|
||
model_kwargs["is_first_forward"] = False
|
||
return model_kwargs
|
||
|
||
def prepare_inputs_for_generation(
|
||
self,
|
||
input_ids: torch.LongTensor,
|
||
past_key_values: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.Tensor] = None,
|
||
is_first_forward: bool = True,
|
||
**kwargs,
|
||
) -> dict:
|
||
# only last token for input_ids if past is not None
|
||
if position_ids is None:
|
||
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
||
if not is_first_forward:
|
||
position_ids = position_ids[..., -1:]
|
||
input_ids = input_ids[:, -1:]
|
||
return {
|
||
"input_ids": input_ids,
|
||
"past_key_values": past_key_values,
|
||
"position_ids": position_ids,
|
||
"attention_mask": attention_mask,
|
||
"return_last_logit": True,
|
||
}
|
||
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||
inputs_embeds: Optional[torch.Tensor] = None,
|
||
labels: Optional[torch.Tensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
return_last_logit: Optional[bool] = False,
|
||
):
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
transformer_outputs = self.transformer(
|
||
input_ids=input_ids,
|
||
position_ids=position_ids,
|
||
attention_mask=attention_mask,
|
||
past_key_values=past_key_values,
|
||
inputs_embeds=inputs_embeds,
|
||
use_cache=use_cache,
|
||
output_hidden_states=output_hidden_states,
|
||
return_dict=return_dict,
|
||
)
|
||
|
||
hidden_states = transformer_outputs[0]
|
||
if return_last_logit:
|
||
hidden_states = hidden_states[-1:]
|
||
lm_logits = self.transformer.output_layer(hidden_states)
|
||
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
||
|
||
loss = None
|
||
if labels is not None:
|
||
lm_logits = lm_logits.to(torch.float32)
|
||
|
||
# Shift so that tokens < n predict n
|
||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
shift_labels = labels[..., 1:].contiguous()
|
||
# Flatten the tokens
|
||
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||
|
||
lm_logits = lm_logits.to(hidden_states.dtype)
|
||
loss = loss.to(hidden_states.dtype)
|
||
|
||
if not return_dict:
|
||
output = (lm_logits,) + transformer_outputs[1:]
|
||
return ((loss,) + output) if loss is not None else output
|
||
|
||
return CausalLMOutputWithPast(
|
||
loss=loss,
|
||
logits=lm_logits,
|
||
past_key_values=transformer_outputs.past_key_values,
|
||
hidden_states=transformer_outputs.hidden_states,
|
||
attentions=transformer_outputs.attentions,
|
||
)
|
||
|
||
@staticmethod
|
||
def _reorder_cache(
|
||
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
||
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
||
"""
|
||
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
||
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||
beam_idx at every generation step.
|
||
|
||
Output shares the same memory storage as `past`.
|
||
"""
|
||
return tuple(
|
||
(
|
||
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
||
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
||
)
|
||
for layer_past in past
|
||
)
|
||
|
||
def process_response(self, response):
|
||
response = response.strip()
|
||
response = response.replace("[[训练时间]]", "2023年")
|
||
return response
|
||
|
||
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
||
prompt = tokenizer.build_prompt(query, history=history)
|
||
inputs = tokenizer([prompt], return_tensors="pt")
|
||
inputs = inputs.to(self.device)
|
||
return inputs
|
||
|
||
def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
||
if history:
|
||
prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
||
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
||
input_ids = input_ids[1:]
|
||
inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
|
||
else:
|
||
prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
||
inputs = tokenizer([prompt], return_tensors="pt")
|
||
inputs = inputs.to(self.device)
|
||
return inputs
|
||
|
||
@torch.no_grad()
|
||
def chat(
|
||
self,
|
||
tokenizer,
|
||
query: str,
|
||
history: List[Tuple[str, str]] = None,
|
||
max_length: int = 8192,
|
||
num_beams=1,
|
||
do_sample=True,
|
||
top_p=0.8,
|
||
temperature=0.8,
|
||
logits_processor=None,
|
||
**kwargs,
|
||
):
|
||
if history is None:
|
||
history = []
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList()
|
||
logits_processor.append(InvalidScoreLogitsProcessor())
|
||
gen_kwargs = {
|
||
"max_length": max_length,
|
||
"num_beams": num_beams,
|
||
"do_sample": do_sample,
|
||
"top_p": top_p,
|
||
"temperature": temperature,
|
||
"logits_processor": logits_processor,
|
||
**kwargs,
|
||
}
|
||
inputs = self.build_inputs(tokenizer, query, history=history)
|
||
outputs = self.generate(**inputs, **gen_kwargs)
|
||
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) :]
|
||
response = tokenizer.decode(outputs)
|
||
response = self.process_response(response)
|
||
history = history + [(query, response)]
|
||
return response, history
|
||
|
||
@torch.no_grad()
|
||
def stream_chat(
|
||
self,
|
||
tokenizer,
|
||
query: str,
|
||
history: List[Tuple[str, str]] = None,
|
||
past_key_values=None,
|
||
max_length: int = 8192,
|
||
do_sample=True,
|
||
top_p=0.8,
|
||
temperature=0.8,
|
||
logits_processor=None,
|
||
return_past_key_values=False,
|
||
**kwargs,
|
||
):
|
||
if history is None:
|
||
history = []
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList()
|
||
logits_processor.append(InvalidScoreLogitsProcessor())
|
||
gen_kwargs = {
|
||
"max_length": max_length,
|
||
"do_sample": do_sample,
|
||
"top_p": top_p,
|
||
"temperature": temperature,
|
||
"logits_processor": logits_processor,
|
||
**kwargs,
|
||
}
|
||
if past_key_values is None and not return_past_key_values:
|
||
inputs = self.build_inputs(tokenizer, query, history=history)
|
||
else:
|
||
inputs = self.build_stream_inputs(tokenizer, query, history=history)
|
||
if past_key_values is not None:
|
||
past_length = past_key_values[0][0].shape[0]
|
||
if self.transformer.pre_seq_len is not None:
|
||
past_length -= self.transformer.pre_seq_len
|
||
inputs.position_ids += past_length
|
||
attention_mask = inputs.attention_mask
|
||
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
||
inputs["attention_mask"] = attention_mask
|
||
for outputs in self.stream_generate(
|
||
**inputs,
|
||
past_key_values=past_key_values,
|
||
return_past_key_values=return_past_key_values,
|
||
**gen_kwargs,
|
||
):
|
||
if return_past_key_values:
|
||
outputs, past_key_values = outputs
|
||
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) :]
|
||
response = tokenizer.decode(outputs)
|
||
if response and response[-1] != "<EFBFBD>":
|
||
response = self.process_response(response)
|
||
new_history = history + [(query, response)]
|
||
if return_past_key_values:
|
||
yield response, new_history, past_key_values
|
||
else:
|
||
yield response, new_history
|
||
|
||
@torch.no_grad()
|
||
def stream_generate(
|
||
self,
|
||
input_ids,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||
return_past_key_values=False,
|
||
**kwargs,
|
||
):
|
||
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
||
|
||
if generation_config is None:
|
||
generation_config = self.generation_config
|
||
generation_config = copy.deepcopy(generation_config)
|
||
model_kwargs = generation_config.update(**kwargs)
|
||
bos_token_id, eos_token_id = (
|
||
generation_config.bos_token_id,
|
||
generation_config.eos_token_id,
|
||
)
|
||
|
||
if isinstance(eos_token_id, int):
|
||
eos_token_id = [eos_token_id]
|
||
|
||
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||
if has_default_max_length and generation_config.max_new_tokens is None:
|
||
warnings.warn(
|
||
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
||
"This behavior is deprecated and will be removed from the config in v5 of Transformers -- we"
|
||
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
||
UserWarning,
|
||
)
|
||
elif generation_config.max_new_tokens is not None:
|
||
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
||
if not has_default_max_length:
|
||
logger.warn(
|
||
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||
"Please refer to the documentation for more information. "
|
||
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
||
UserWarning,
|
||
)
|
||
|
||
if input_ids_seq_length >= generation_config.max_length:
|
||
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
||
logger.warning(
|
||
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
||
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
||
" increasing `max_new_tokens`."
|
||
)
|
||
|
||
# 2. Set generation parameters if not already defined
|
||
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
||
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
||
|
||
logits_processor = self._get_logits_processor(
|
||
generation_config=generation_config,
|
||
input_ids_seq_length=input_ids_seq_length,
|
||
encoder_input_ids=input_ids,
|
||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||
logits_processor=logits_processor,
|
||
)
|
||
|
||
stopping_criteria = self._get_stopping_criteria(
|
||
generation_config=generation_config, stopping_criteria=stopping_criteria
|
||
)
|
||
logits_warper = self._get_logits_warper(generation_config)
|
||
|
||
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
||
scores = None
|
||
while True:
|
||
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||
# forward pass to get next token
|
||
outputs = self(
|
||
**model_inputs,
|
||
return_dict=True,
|
||
output_attentions=False,
|
||
output_hidden_states=False,
|
||
)
|
||
|
||
next_token_logits = outputs.logits[:, -1, :]
|
||
|
||
# pre-process distribution
|
||
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||
|
||
# sample
|
||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||
if generation_config.do_sample:
|
||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||
else:
|
||
next_tokens = torch.argmax(probs, dim=-1)
|
||
|
||
# update generated ids, model inputs, and length for next step
|
||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||
model_kwargs = self._update_model_kwargs_for_generation(
|
||
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
||
)
|
||
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
||
if return_past_key_values:
|
||
yield input_ids, outputs.past_key_values
|
||
else:
|
||
yield input_ids
|
||
# stop when each sentence is finished, or if we exceed the maximum length
|
||
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||
break
|
||
|
||
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
||
if bits == 0:
|
||
return
|
||
|
||
from .quantization import quantize
|
||
|
||
if self.quantized:
|
||
logger.info("Already quantized.")
|
||
return self
|
||
|
||
self.quantized = True
|
||
|
||
self.config.quantization_bit = bits
|
||
|
||
self.transformer.encoder = quantize(
|
||
self.transformer.encoder,
|
||
bits,
|
||
empty_init=empty_init,
|
||
device=device,
|
||
**kwargs,
|
||
)
|
||
return self
|