mirror of https://github.com/hpcaitech/ColossalAI
89 lines
4.2 KiB
Python
89 lines
4.2 KiB
Python
import torch.nn.functional as F
|
|
from typing import Optional
|
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
|
from colossalai.nn.layer.parallel_1d._utils import reduce_input, reduce_grad
|
|
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, distspec
|
|
from colossalai.tensor.graph import GraphOpNode, GraphGlobalEnv
|
|
from colossalai.context import ParallelMode
|
|
from ._utils import GeneralTensor, convert_to_colo_tensor
|
|
|
|
|
|
def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> ColoTensor:
|
|
# Input:S[1] x Weight:S[0] = Output:P
|
|
# All-Reduce(Output) + bias = res
|
|
# Input:S[1]
|
|
input_tensor = input_tensor.convert_to_dist_spec(
|
|
distspec.shard(weight.spec.get_process_group(), [-1], [weight.spec.get_process_group_size()]))
|
|
|
|
# Output:P
|
|
partial_output = F.linear(input_tensor, weight)
|
|
# Reduce(Output)
|
|
output = reduce_input(partial_output, ParallelMode.PARALLEL_1D)
|
|
# Bias
|
|
if bias is not None:
|
|
assert not bias.has_spec(), 'Invalid bias spec for 1Drow Linear op'
|
|
output = output + bias
|
|
|
|
output = ColoTensor.from_torch_tensor(output, spec=TensorSpec(distspec.replicate(weight.spec.get_process_group())))
|
|
return output
|
|
|
|
|
|
def colo_linear_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> ColoTensor:
|
|
# Input:B x Weight:S[1] + Bias:S[1] = Output:S[1]
|
|
# All-Gather(Output)
|
|
# Input:B
|
|
parallel_action = weight.spec.parallel_action
|
|
input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
|
|
input_parallel = reduce_grad(input_tensor, ParallelMode.PARALLEL_1D)
|
|
|
|
output_parallel = F.linear(input_parallel, weight, bias)
|
|
output = ColoTensor.from_torch_tensor(output_parallel,
|
|
spec=TensorSpec(
|
|
distspec.shard(weight.spec.get_process_group(), [-1],
|
|
[weight.spec.get_process_group_size()]),
|
|
ParallelAction(ComputePattern.TP1D)))
|
|
if parallel_action.gather_out:
|
|
# All-Gather(Output)
|
|
output = output.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
|
|
return output
|
|
|
|
|
|
def colo_linear_1d(mode: str, input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> ColoTensor:
|
|
assert mode in ('row', 'col')
|
|
funcs = {'row': colo_linear_1Drow, 'col': colo_linear_1Dcol}
|
|
return funcs[mode](input_tensor, weight, bias)
|
|
|
|
|
|
@colo_op_impl(F.linear)
|
|
def colo_linear(input_tensor: GeneralTensor, weight: GeneralTensor, bias: Optional[GeneralTensor] = None):
|
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
|
This method computes a linear.
|
|
"""
|
|
input_tensor, weight, bias = tuple(map(convert_to_colo_tensor, (input_tensor, weight, bias)))
|
|
|
|
# building the computing graph, inputs -> op
|
|
if GraphGlobalEnv().graph_building:
|
|
cur_op_node = GraphOpNode('linear', [weight, bias])
|
|
cur_op_node.add_prev_tensor(input_tensor)
|
|
# Add communication logic before and after linear call.
|
|
ret_tensor = None
|
|
if not weight.has_spec(): # No Model Parallel Applied
|
|
assert weight.spec.is_gathered(), 'Invalid weight spec for native Linear op'
|
|
assert bias is None or bias.spec.is_gathered(), 'Invalid bias spec for native Linear op'
|
|
ret_tensor = ColoTensor.from_torch_tensor(F.linear(input_tensor, weight, bias))
|
|
elif weight.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
|
|
if weight.spec.is_1D_col() and (bias is None or bias.spec.is_gathered()):
|
|
mode = 'row'
|
|
elif weight.spec.is_1D_row() and (bias is None or bias.spec.is_1D_row() or bias.spec.is_1D_col()):
|
|
mode = 'col'
|
|
else:
|
|
raise NotImplementedError
|
|
ret_tensor = colo_linear_1d(mode, input_tensor, weight, bias)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
# building the computing graph, op -> output
|
|
if GraphGlobalEnv().graph_building:
|
|
cur_op_node.add_post_tensor(ret_tensor)
|
|
return ret_tensor
|