ColossalAI/colossalai/nn/_ops/addmm.py

92 lines
4.1 KiB
Python

import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.nn.layer.parallel_1d._utils import reduce_input, reduce_grad
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor
from colossalai.tensor import distspec
from colossalai.context import ParallelMode
from ._utils import GeneralTensor, Number, convert_to_colo_tensor
def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
# mat1:S[1] x mat2:S[0] = Output:P
# beta * input + alpha * All-Reduce(Output) = res
mat1 = mat1.convert_to_dist_spec(
distspec.shard(mat2.spec.get_process_group(), [-1], [mat2.spec.get_process_group_size()]))
# Output:P
partial_output = torch.mm(mat1, mat2)
# Reduce(Output)
output = reduce_input(partial_output, ParallelMode.PARALLEL_1D)
# input
assert not input_tensor.has_spec(), 'Invalid input spec for 1Drow addmm op'
output = beta * input_tensor + alpha * output
output = ColoTensor.from_torch_tensor(output, spec=TensorSpec(distspec.replicate(mat2.spec.get_process_group())))
return output
def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
# mat1:B x mat2:S[1] + input:S[1] = Output:S[1]
parallel_action = mat2.spec.parallel_action
mat1 = mat1.convert_to_dist_spec(distspec.replicate(mat2.spec.get_process_group()))
mat1 = reduce_grad(mat1, ParallelMode.PARALLEL_1D)
output_parallel = torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha)
output_spec = TensorSpec(distspec.shard(mat2.spec.get_process_group(), [-1], [mat2.spec.get_process_group_size()]),
ParallelAction(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
if parallel_action.gather_out:
# All-Gather(Output)
output = output.convert_to_dist_spec(distspec.replicate(mat2.spec.get_process_group()))
return output
def colo_addmm_1d(mode: str, input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
assert mode in ('row', 'col')
funcs = {'row': colo_addmm_1Drow, 'col': colo_addmm_1Dcol}
return funcs[mode](input_tensor, mat1, mat2, beta, alpha)
@colo_op_impl(torch.addmm)
def colo_addmm(input_tensor: GeneralTensor,
mat1: GeneralTensor,
mat2: GeneralTensor,
*args,
beta: Number = 1,
alpha: Number = 1) -> ColoTensor:
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
This method computes a linear.
"""
input_tensor, mat1, mat2 = tuple(map(convert_to_colo_tensor, (input_tensor, mat1, mat2)))
# building the computing graph, inputs -> op
# if GraphGlobalEnv().graph_building:
# cur_op_node = GraphOpNode('linear', [weight, bias])
# cur_op_node.add_prev_tensor(input_tensor)
# Add communication logic before and after linear call.
ret_tensor = None
if not mat2.has_spec(): # No Model Parallel Applied
assert mat2.spec.is_gathered(), 'Invalid mat2 spec for native addmm op'
assert input_tensor.spec.is_gathered(), 'Invalid input spec for native addmm op'
ret_tensor = ColoTensor.from_torch_tensor(torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha))
elif mat2.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if mat2.spec.is_1D_row() and input_tensor.spec.is_gathered():
mode = 'row'
elif mat2.spec.is_1D_col() and (input_tensor.spec.is_1D_col() or input_tensor.spec.is_1D_row()):
mode = 'col'
else:
raise NotImplementedError
ret_tensor = colo_addmm_1d(mode, input_tensor, mat1, mat2, beta, alpha)
else:
raise NotImplementedError
# building the computing graph, op -> output
# if GraphGlobalEnv().graph_building:
# cur_op_node.add_post_tensor(ret_tensor)
return ret_tensor