ColossalAI/tests/test_ddp/test_ddp_ignore_params.py

91 lines
2.9 KiB
Python

import pytest
import colossalai
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.gemini import ChunkManager
from functools import partial
from colossalai.nn.parallel import ColoDDP, ZeroDDP
from colossalai.gemini.gemini_mgr import GeminiManager
from typing import Callable
import torch.distributed as dist
import os
import random
import numpy as np
from colossalai.tensor import ProcessGroup
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def init_ddp(module: torch.nn.Module) -> ColoDDP:
pg = ProcessGroup()
return ColoDDP(module, process_group=pg)
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False) -> ZeroDDP:
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
chunk_manager = ChunkManager(chunk_size)
gemini_manager = GeminiManager('cuda', chunk_manager)
pg = ProcessGroup()
return ZeroDDP(module, gemini_manager, pg)
class Net(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(3, 3, bias=False)
self.fc2 = torch.nn.Linear(3, 1, bias=False)
def forward(self, x):
return self.fc2(self.fc1(x))
def run_fwd_bwd(ddp_cls: ColoDDP, init_ddp_func: Callable[[torch.nn.Module], ColoDDP]):
with ColoInitContext(device=get_current_device()):
model = Net().cuda()
w1 = model.fc1.weight
w2 = model.fc2.weight
ddp_cls.set_params_to_ignore([w2])
model = init_ddp_func(model)
x = torch.rand(2, 3, device=get_current_device())
logits = model(x)
loss = torch.sum(logits)
model.backward(loss)
w1_grads = [torch.empty_like(w1) for _ in range(dist.get_world_size())]
dist.all_gather(w1_grads, w1.grad)
assert torch.equal(w1_grads[0], w1_grads[1])
w2_grads = [torch.empty_like(w2) for _ in range(dist.get_world_size())]
dist.all_gather(w2_grads, w2.grad)
assert not torch.equal(w2_grads[0], w2_grads[1])
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
set_seed(dist.get_rank())
run_fwd_bwd(ColoDDP, init_ddp)
run_fwd_bwd(ZeroDDP, partial(init_ddpv2, use_chunk=False))
run_fwd_bwd(ZeroDDP, partial(init_ddpv2, use_chunk=True))
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_ddp_ignore_params(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_ddp_ignore_params(2)