You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/engine/_base_engine.py

154 lines
4.9 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import List
from torch.nn import Module
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.logging import get_dist_logger
from torch import Tensor
from colossalai.engine.ophooks import register_ophooks_recursively, BaseOpHook
from typing import Optional
from colossalai.engine.gradient_handler import BaseGradientHandler
class Engine:
"""Basic engine class for training and evaluation. It runs a specific process method
:meth:`step` which is based on the given :attr:`schedule` over each batch of a dataset.
It controls a iteration in training.
:param model: The neural network model
:type model: ``torch.nn.Module``
:param optimizer: Optimizer for updating the parameters
:type optimizer: ``torch.optim.Optimizer``
:param criterion: Loss function for calculating loss
:type criterion: ``torch.nn.modules.loss._Loss``, optional
:param gradient_handlers: A list of gradient handler used in backward
:type gradient_handlers: a list of ``BaseGradientHandler``, optional
:param clip_grad_norm: The norm of gradient clipping
:type clip_grad_norm: float, optional
:param ophook_list: List of ophook
:type ophook_list: list
:param verbose: whether to display log info
:type verbose: bool
"""
def __init__(self,
model: Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
gradient_handlers: Optional[List[BaseGradientHandler]] = None,
clip_grad_norm: float = 0.0,
ophook_list: Optional[List[BaseOpHook]] = None,
verbose: bool = True):
self._model = model
self._optimizer = optimizer
self._criterion = criterion
self._clip_grad_norm = clip_grad_norm
self._verbose = verbose
self._logger = get_dist_logger()
# state
self.training = True # default
# build gradient handler
if gradient_handlers:
self._gradient_handlers = gradient_handlers
else:
self._gradient_handlers = []
if ophook_list is None:
self._ophook_list = []
else:
self._ophook_list = ophook_list
register_ophooks_recursively(self._model, self._ophook_list)
@property
def model(self):
"""Model attached to the engine"""
return self._model
@property
def optimizer(self):
"""Optimizer attached to the engine"""
return self._optimizer
@property
def criterion(self):
"""Criterion attached to the engine"""
return self._criterion
def zero_grad(self):
"""Set the gradient of parameters to zero
"""
self.optimizer.zero_grad()
def step(self):
"""Execute parameter update
"""
self._all_reduce_gradients()
self.optimizer.clip_grad_norm(self.model, self._clip_grad_norm)
return self.optimizer.step()
def backward(self, loss: Tensor):
"""Start backward propagation given the loss value computed by a loss function
:param loss: Loss value computed by a loss function
:type loss: :class:`torch.Tensor`
"""
ret = self.optimizer.backward(loss)
for ophook in self._ophook_list:
ophook.post_iter()
return ret
def backward_by_grad(self, tensor, grad):
"""Start backward propagation given the gradient of the output tensor
:param tensor: Output tensor
:type tensor: :class:`torch.Tensor`
:param grad: Gradient passed back to the output
:type grad: :class:`torch.Tensor`
"""
ret = self.optimizer.backward_by_grad(tensor, grad)
for ophook in self._ophook_list:
ophook.post_iter()
return ret
def calc_loss(self, *args, **kwargs):
"""Compute the loss value
:param args: Args used in criterion function
:param kwargs: Kwargs used in criterion function
:return: The loss value
:rtype: :class:`torch.Tensor`
"""
return self.criterion(*args, **kwargs)
def __call__(self, *args, **kwargs):
"""Run the forward step for the model
:return: Output the model
:rtype: Tuple[:class:`torch.Tensor`] or :class:`torch.Tensor`
"""
return self.model(*args, **kwargs)
def _all_reduce_gradients(self):
"""Handles all-reduce operations of gradients across different parallel groups.
"""
for handler in self._gradient_handlers:
handler.handle_gradient()
def train(self):
"""Sets the model to training mode.
"""
self.training = True
self._model.train()
def eval(self):
"""Sets the model to evaluation mode.
"""
self.training = False
self._model.eval()