Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

64 lines
1.9 KiB

import copy
import pytest
import torch
import torch.nn as nn
from lazy_init_utils import SUPPORT_LAZY
from torch.nn import Parameter
from colossalai.lazy import LazyInitContext
@pytest.mark.skipif(not SUPPORT_LAZY, reason="requires torch >= 1.12.0")
def test_lazy_ops():
with LazyInitContext():
x = torch.rand(2, 3)
assert tuple(x.shape) == (2, 3)
assert x.device.type == "cpu"
x.requires_grad is False
y = x.cuda()
assert tuple(y.shape) == (2, 3)
assert y.device.type == "cuda"
assert y.requires_grad is False
assert x.cpu() is x
p = Parameter(torch.empty(2, 3))
assert tuple(p.shape) == (2, 3)
assert p.device.type == "cpu"
assert p.requires_grad is True
assert isinstance(p, Parameter)
x.materialize()
assert tuple(x.shape) == (2, 3)
assert x.device.type == "cpu"
assert x.requires_grad is False
y.materialize()
assert tuple(y.shape) == (2, 3)
assert y.device.type == "cuda"
assert y.requires_grad is False
p.materialize()
assert tuple(p.shape) == (2, 3)
assert p.device.type == "cpu"
assert p.requires_grad is True
assert isinstance(p, Parameter)
with LazyInitContext():
x = torch.empty(2, 3)
x.uniform_()
x.materialize()
assert tuple(x.shape) == (2, 3)
with LazyInitContext():
model = nn.Linear(3, 4)
model = model.cuda()
model_copied = copy.deepcopy(model)
LazyInitContext.materialize(model)
assert model.weight.device.type == "cuda"
assert model.bias.device.type == "cuda"
LazyInitContext.materialize(model_copied)
assert model_copied.weight.device.type == "cuda"
assert model_copied.bias.device.type == "cuda"
assert torch.equal(model.weight, model_copied.weight)
assert torch.equal(model.bias, model_copied.bias)
if __name__ == "__main__":
test_lazy_ops()