mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
6.3 KiB
161 lines
6.3 KiB
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_adam.py |
|
""" |
|
Copyright 2020 The Microsoft DeepSpeed Team |
|
|
|
Copyright NVIDIA/apex |
|
This file is adapted from fused adam in NVIDIA/apex, commit a109f85 |
|
Licensed under the MIT License. |
|
""" |
|
import torch |
|
|
|
from colossalai.utils import get_current_device, multi_tensor_applier |
|
|
|
|
|
class FusedAdam(torch.optim.Optimizer): |
|
"""Implements Adam algorithm. |
|
|
|
`FusedAdam` requires CUDA extensions which can be built during installation or runtime. |
|
|
|
This version of fused Adam implements 2 fusions. |
|
|
|
* Fusion of the Adam update's elementwise operations |
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. |
|
|
|
:class:`colossalai.nn.optimizer.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, |
|
or ``torch.optim.Adam`` with ``adamw_mode=False`` |
|
|
|
:class:`colossalai.nn.optimizer.FusedAdam` may be used with or without Amp. |
|
|
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
adamw_mode (boolean, optional): Apply L2 regularization or weight decay |
|
True for decoupled weight decay(also known as AdamW) (default: True) |
|
set_grad_none (bool, optional): whether set grad to None when zero_grad() |
|
method is called. (default: True) |
|
|
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
adamw_mode=True, |
|
weight_decay=0.0, |
|
amsgrad=False, |
|
set_grad_none=True, |
|
): |
|
if amsgrad: |
|
raise RuntimeError("FusedAdam does not support the AMSGrad variant.") |
|
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) |
|
super(FusedAdam, self).__init__(params, defaults) |
|
self.adamw_mode = 1 if adamw_mode else 0 |
|
self.set_grad_none = set_grad_none |
|
if multi_tensor_applier.available: |
|
from colossalai.kernel.kernel_loader import FusedOptimizerLoader |
|
|
|
fused_optim = FusedOptimizerLoader().load() |
|
|
|
# Skip buffer |
|
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=get_current_device()) |
|
self.multi_tensor_adam = fused_optim.multi_tensor_adam |
|
else: |
|
raise RuntimeError("FusedAdam requires cuda extensions") |
|
|
|
def zero_grad(self, set_to_none=False): |
|
if set_to_none: |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
p.grad = None |
|
else: |
|
super(FusedAdam, self).zero_grad() |
|
|
|
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, div_scale: float = -1): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
|
|
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. |
|
""" |
|
if any(p is not None for p in [grads, output_params, scale, grad_norms]): |
|
raise RuntimeError( |
|
"FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments." |
|
) |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group["bias_correction"] else 0 |
|
beta1, beta2 = group["betas"] |
|
|
|
# assume same step across group now to simplify things |
|
# per parameter step can be easily support by making it tensor, or pass list into kernel |
|
if "step" in group: |
|
group["step"] += 1 |
|
else: |
|
group["step"] = 1 |
|
|
|
# create lists for multi-tensor apply |
|
g_l, p_l, m_l, v_l = [], [], [], [] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse gradients, please consider SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
# State initialization |
|
if len(state) == 0: |
|
# Exponential moving average of gradient values |
|
state["exp_avg"] = torch.zeros_like(p) |
|
# Exponential moving average of squared gradient values |
|
state["exp_avg_sq"] = torch.zeros_like(p) |
|
|
|
if p.dtype not in [torch.float16, torch.float32, torch.bfloat16]: |
|
raise RuntimeError("FusedAdam only support fp16, fp32 and bf16.") |
|
|
|
g_l.append(p.grad.data) |
|
p_l.append(p.data) |
|
m_l.append(state["exp_avg"]) |
|
v_l.append(state["exp_avg_sq"]) |
|
|
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_l, p_l, m_l, v_l], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adamw_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
div_scale, |
|
) |
|
|
|
return loss
|
|
|