ColossalAI/applications/ColossalChat/coati/distributed/grpo_consumer.py

181 lines
7.0 KiB
Python

from contextlib import nullcontext
from typing import Optional
import ray
import torch
import wandb
from coati.distributed.consumer import BaseConsumer
from coati.distributed.loss import PolicyLoss
from coati.distributed.reward.reward_fn import math_reward_fn
from coati.distributed.reward.verifiable_reward import VerifiableReward
from coati.distributed.utils import calc_action_log_probs
from coati.trainer.utils import all_reduce_mean, is_rank_0
from transformers import AutoModelForCausalLM, AutoTokenizer
from colossalai.nn.optimizer import HybridAdam
@ray.remote
class GRPOConsumer(BaseConsumer):
def __init__(
self,
num_producers,
num_episodes,
rank,
world_size,
master_addr,
master_port,
num_update_per_episode,
num_recv_per_update,
batch_size,
model_config,
plugin_config,
microbatch_size=1,
num_generations=4,
use_wandb=False,
):
super().__init__(
num_producers,
num_episodes,
rank,
world_size,
master_addr,
master_port,
num_update_per_episode,
num_recv_per_update,
batch_size,
model_config,
plugin_config,
microbatch_size,
)
path = model_config.pop("path")
self.policy_model = AutoModelForCausalLM.from_pretrained(path, **model_config)
self.policy_model.train()
self.policy_model.gradient_checkpointing_enable()
self.optimizer = HybridAdam(self.policy_model.parameters(), lr=1e-4)
self.accum_loss = torch.zeros(1, device=self.device)
self.accum_reward = torch.zeros(1, device=self.device)
self.accum_kl = torch.zeros(1, device=self.device)
# Reference model is initialized from policy model.
self.reference_model = AutoModelForCausalLM.from_pretrained(path, **model_config)
self.reference_model.eval()
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.pad_token_id = self.tokenizer.pad_token_id
self.num_generations = num_generations
# Initialize verifiable reward.
response_format_tags = {
"think_start": {"text": "<think>", "num_occur": 1},
"think_end": {"text": "</think>", "num_occur": 1},
"answer_start": {"text": "<answer>", "num_occur": 1},
"answer_end": {"text": "</answer>", "num_occur": 1},
}
self.reward_model = VerifiableReward(
reward_fns=[math_reward_fn], tokenizer=self.tokenizer, tags=response_format_tags
)
self.policy_loss_fn = PolicyLoss()
if is_rank_0():
self.run = wandb.init(project="Colossal-GRPO-Test4")
def setup(self):
super().setup()
self.policy_model, self.optimizer, *_ = self.booster.boost(self.policy_model, self.optimizer)
self.reference_model, *_ = self.booster.boost(self.reference_model)
def step(self, step_idx: int, **kwargs) -> Optional[float]:
"""
Step data from policy model:
[{
"input_ids": torch.Tensor,
"attention_mask": torch.Tensor,
"action_mask": torch.Tensor,
"action_log_probs": torch.Tensor,
},
...]
Format:
[batch_size, num_of_generation, prompt_length + response_length] --- <PAD>...<PAD><PROMPT>...<PROMPT><RESPONSE>...<RESPONSE><PAD>...<PAD>.
"""
# Reshape to [batch_size x num_of_generation, prompt_length + response_length]
data = {k: v.view(-1, v.size(-1)) for k, v in kwargs.items()}
action_mask = data["action_mask"]
num_action = action_mask.shape[1]
old_action_log_probs = data["action_log_probs"]
need_update = (step_idx + 1) % self.num_microbatches == 0
ctx = nullcontext() if need_update else self.booster.no_sync(self.policy_model, self.optimizer)
with ctx:
policy_model_logits = self.policy_model(
input_ids=data["input_ids"],
attention_mask=data["attention_mask"],
)["logits"]
action_log_probs = calc_action_log_probs(policy_model_logits, data["input_ids"], num_action)
reference_model_logits = self.reference_model(
input_ids=data["input_ids"],
attention_mask=data["attention_mask"],
)["logits"]
reference_action_log_probs = calc_action_log_probs(reference_model_logits, data["input_ids"], num_action)
# GRPO advantage calculation
kl = torch.sum(-0.1 * (action_log_probs - reference_action_log_probs) * action_mask, dim=-1) / torch.sum(
action_mask, dim=-1
)
reward = self.reward_model(data["input_ids"], gt_answer=data["gt_answer"])
reward = kl + reward
# [batch_size, num_generations]
group_reward = reward.view(-1, self.num_generations)
# [batch_size x num_generations]
reward_mean = group_reward.mean(dim=1).repeat_interleave(self.num_generations, dim=0)
reward_std = group_reward.std(dim=1).repeat_interleave(self.num_generations, dim=0)
# [batch_size x num_generations]
advantages = (group_reward.view(-1) - reward_mean) / (reward_std + 1e-4)
# GRPO advantage calculation
kl = torch.sum(-0.01 * (action_log_probs - reference_action_log_probs) * action_mask, dim=-1) / torch.sum(
action_mask, dim=-1
)
# Calculate Loss
loss, skip_update, _ = self.policy_loss_fn(
action_log_probs,
old_action_log_probs,
advantages.unsqueeze(dim=-1).repeat_interleave(action_log_probs.size(-1), dim=-1),
action_mask,
)
loss = loss / self.num_microbatches
if not skip_update:
self.booster.backward(loss, self.optimizer)
loss = all_reduce_mean(loss)
reward = all_reduce_mean(reward.mean())
kl = all_reduce_mean(kl.mean())
self.accum_loss.add_(loss.data)
self.accum_reward.add_(reward.data)
self.accum_kl.add_(kl.data)
if need_update:
self.optimizer.step()
self.optimizer.zero_grad()
loss_scalar = self.accum_loss.item()
if is_rank_0():
print("Loss:", self.accum_loss.item(), "Reward:", self.accum_reward.item(), "KL:", self.accum_kl.item())
self.run.log(
{"loss": self.accum_loss.item(), "reward": self.accum_reward.item(), "kl": self.accum_kl.item()}
)
self.accum_loss.zero_()
self.accum_reward.zero_()
self.accum_kl.zero_()
return loss_scalar
def state_dict(self):
self.policy_model._force_wait_all_gather()
model = self.policy_model.unwrap()
state_dict = model.state_dict()
return state_dict