mirror of https://github.com/hpcaitech/ColossalAI
159 lines
5.5 KiB
Python
159 lines
5.5 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Learning rate decay functions."""
|
|
|
|
import math
|
|
|
|
|
|
class AnnealingLR(object):
|
|
"""Anneals the learning rate."""
|
|
|
|
def __init__(self,
|
|
optimizer,
|
|
max_lr,
|
|
min_lr,
|
|
warmup_steps,
|
|
decay_steps,
|
|
decay_style,
|
|
use_checkpoint_lr_scheduler=True,
|
|
override_lr_scheduler=False):
|
|
|
|
# Class values.
|
|
self.optimizer = optimizer
|
|
|
|
self.max_lr = float(max_lr)
|
|
self.min_lr = min_lr
|
|
assert self.min_lr >= 0.0
|
|
assert self.max_lr >= self.min_lr
|
|
|
|
self.warmup_steps = warmup_steps
|
|
self.num_steps = 0
|
|
self.decay_steps = decay_steps
|
|
assert self.decay_steps > 0
|
|
assert self.warmup_steps < self.decay_steps
|
|
|
|
self.decay_style = decay_style
|
|
|
|
self.override_lr_scheduler = override_lr_scheduler
|
|
self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
|
|
if self.override_lr_scheduler:
|
|
assert not self.use_checkpoint_lr_scheduler, 'both override and '\
|
|
'use-checkpoint are set.'
|
|
|
|
# Set the learning rate
|
|
self.step(0)
|
|
|
|
def get_lr(self):
|
|
"""Learning rate decay functions from:
|
|
https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
|
|
|
|
# Use linear warmup for the initial part.
|
|
if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
|
|
return self.max_lr * float(self.num_steps) / \
|
|
float(self.warmup_steps)
|
|
|
|
# If the learning rate is constant, just return the initial value.
|
|
if self.decay_style == 'constant':
|
|
return self.max_lr
|
|
|
|
# For any steps larger than `self.decay_steps`, use `self.min_lr`.
|
|
if self.num_steps > self.decay_steps:
|
|
return self.min_lr
|
|
|
|
# If we are done with the warmup period, use the decay style.
|
|
num_steps_ = self.num_steps - self.warmup_steps
|
|
decay_steps_ = self.decay_steps - self.warmup_steps
|
|
decay_ratio = float(num_steps_) / float(decay_steps_)
|
|
assert decay_ratio >= 0.0
|
|
assert decay_ratio <= 1.0
|
|
delta_lr = self.max_lr - self.min_lr
|
|
|
|
if self.decay_style == 'linear':
|
|
coeff = (1.0 - decay_ratio)
|
|
elif self.decay_style == 'cosine':
|
|
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
|
else:
|
|
raise Exception('{} decay style is not supported.'.format(
|
|
self.decay_style))
|
|
|
|
return self.min_lr + coeff * delta_lr
|
|
|
|
def step(self, increment=1):
|
|
"""Set lr for all parameters groups."""
|
|
self.num_steps += increment
|
|
new_lr = self.get_lr()
|
|
for group in self.optimizer.param_groups:
|
|
group['lr'] = new_lr
|
|
|
|
def state_dict(self):
|
|
state_dict = {
|
|
'max_lr': self.max_lr,
|
|
'warmup_steps': self.warmup_steps,
|
|
'num_steps': self.num_steps,
|
|
'decay_style': self.decay_style,
|
|
'decay_steps': self.decay_steps,
|
|
'min_lr': self.min_lr
|
|
}
|
|
return state_dict
|
|
|
|
def _check_and_set(self, cls_value, sd_value, name):
|
|
"""Auxiliary function for checking the values in the checkpoint and
|
|
setting them."""
|
|
if self.override_lr_scheduler:
|
|
return cls_value
|
|
|
|
if not self.use_checkpoint_lr_scheduler:
|
|
assert cls_value == sd_value, \
|
|
f'AnnealingLR: class input value {cls_value} and checkpoint' \
|
|
f'value {sd_value} for {name} do not match'
|
|
return sd_value
|
|
|
|
def load_state_dict(self, sd):
|
|
|
|
if 'start_lr' in sd:
|
|
max_lr_ = sd['start_lr']
|
|
else:
|
|
max_lr_ = sd['max_lr']
|
|
self.max_lr = self._check_and_set(self.max_lr, max_lr_,
|
|
'learning rate')
|
|
|
|
self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
|
|
'minimum learning rate')
|
|
|
|
if 'warmup_iter' in sd:
|
|
warmup_steps_ = sd['warmup_iter']
|
|
else:
|
|
warmup_steps_ = sd['warmup_steps']
|
|
self.warmup_steps = self._check_and_set(self.warmup_steps,
|
|
warmup_steps_,
|
|
'warmup iterations')
|
|
|
|
if 'end_iter' in sd:
|
|
decay_steps_ = sd['end_iter']
|
|
else:
|
|
decay_steps_ = sd['decay_steps']
|
|
self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_,
|
|
'total number of iterations')
|
|
self.decay_style = self._check_and_set(self.decay_style,
|
|
sd['decay_style'],
|
|
'decay style')
|
|
|
|
if 'num_iters' in sd:
|
|
num_steps = sd['num_iters']
|
|
else:
|
|
num_steps = sd['num_steps']
|
|
self.step(increment=num_steps)
|