You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/legacy/engine/_base_engine.py

219 lines
7.6 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# this code is inspired by the DeepSpeed library and implemented with our own design from scratch
from typing import Iterable, List, Optional, Type
from torch import Tensor
from torch.nn import Module
from torch.nn.modules.loss import _Loss
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.engine.gradient_handler import BaseGradientHandler
from colossalai.legacy.engine.schedule import (
BaseSchedule,
InterleavedPipelineSchedule,
NonPipelineSchedule,
PipelineSchedule,
)
from colossalai.legacy.zero.gemini import BaseOpHook, register_ophooks_recursively
from colossalai.logging import get_dist_logger
class Engine:
"""Basic engine class for training and evaluation. It runs a specific process method
:meth:`step` which is based on the given :attr:`schedule` over each batch of a dataset.
It controls a iteration in training.
Args:
model (``torch.nn.Module``): The neural network model.
optimizer (``colossalai.interface.OptimizerWrapper``): Optimizer for updating the parameters.
criterion (``torch.nn.modules.loss._Loss``, optional): Loss function for calculating loss.
gradient_handlers (List[``BaseGradientHandler``], optional): A list of gradient handler used in backward.
clip_grad_norm (float, optional): The norm of gradient clipping.
ophook_list (list): List of ophook.
verbose (bool): whether to display log info.
schedule (''BaseSchedule''): Runtime schedule.
Examples:
>>> # define model, criterion, optimizer, lr_scheduler, train_dataloader for your training
>>> model = ...
>>> criterion = ...
>>> optimizer = ...
>>> train_dataloader = ...
>>> engine, _, _, _ = colossalai.initialize(model, optimizer, criterion)
>>> engine.train()
>>> for inputs, labels in train_dataloader
>>> # set gradients to zero
>>> engine.zero_grad()
>>> # run forward pass
>>> outputs = engine(inputs)
>>> # compute loss value and run backward pass
>>> loss = engine.criterion(outputs, labels)
>>> engine.backward(loss)
>>> # update parameters
>>> engine.step()
The example of using Engine in training could be find in
`Training with engine and trainer <https://www.colossalai.org/docs/basics/engine_trainer>`_. and
`Run resnet cifar10 with engine <https://github.com/hpcaitech/ColossalAI-Examples/blob/main/image/resnet/run_resnet_cifar10_with_engine.py>`_.
"""
def __init__(
self,
model: Module,
optimizer: "OptimizerWrapper",
criterion: Optional[_Loss] = None,
gradient_handlers: Optional[List[BaseGradientHandler]] = None,
clip_grad_norm: float = 0.0,
ophook_list: Optional[List[BaseOpHook]] = None,
verbose: bool = True,
schedule: Optional[BaseSchedule] = None,
):
self._model = model
self._optimizer = optimizer
self._criterion = criterion
self._clip_grad_norm = clip_grad_norm
self._verbose = verbose
self._logger = get_dist_logger()
# state
self.training = True # default
# build gradient handler
if gradient_handlers:
self._gradient_handlers = gradient_handlers
else:
self._gradient_handlers = []
if ophook_list is None:
self._ophook_list = []
else:
self._ophook_list = ophook_list
# build schedule
if schedule:
assert isinstance(
schedule, BaseSchedule
), f"expected schedule to be of type BaseSchedule, but got {type(schedule)}"
self._schedule = schedule
else:
self._schedule = NonPipelineSchedule()
if self.uses_pipeline:
self._schedule.pre_processing(self)
# register hook if any
if len(self._ophook_list) > 0:
register_ophooks_recursively(self._model, self._ophook_list)
@property
def ophooks(self):
"""show current activated ophooks"""
return self._ophook_list
@property
def model(self):
"""Model attached to the engine"""
return self._model
@property
def optimizer(self):
"""Optimizer attached to the engine"""
return self._optimizer
@property
def criterion(self):
"""Criterion attached to the engine"""
return self._criterion
@property
def schedule(self):
"""Schedule attached to the engine"""
return self._schedule
@property
def uses_pipeline(self):
"""show the pipeline parallel used or not"""
return isinstance(self._schedule, (PipelineSchedule, InterleavedPipelineSchedule))
def add_hook(self, ophook: Type[BaseOpHook]) -> None:
"""add necessary hook"""
# whether this hook exist
for h in self._ophook_list:
if type(h) == type(ophook):
logger = get_dist_logger()
logger.warning(f"duplicate hooks, at least two instance of {type(ophook)}")
self._ophook_list.append(ophook)
register_ophooks_recursively(self._model, self._ophook_list)
def remove_hook(self, ophook: Type[BaseOpHook]) -> None:
"""remove hook"""
logger = get_dist_logger()
logger.warning(f"removing hooks is currently not supported")
def zero_grad(self):
"""Set the gradient of parameters to zero"""
self.optimizer.zero_grad()
def step(self):
"""Execute parameter update"""
self._all_reduce_gradients()
self.optimizer.clip_grad_by_norm(self._clip_grad_norm)
return self.optimizer.step()
def backward(self, loss: Tensor):
"""Start backward propagation given the loss value computed by a loss function.
Args:
loss (:class:`torch.Tensor`): Loss value computed by a loss function.
"""
ret = self.optimizer.backward(loss)
for ophook in self._ophook_list:
ophook.post_iter()
return ret
def backward_by_grad(self, tensor, grad):
"""Start backward propagation given the gradient of the output tensor.
Args:
tensor (:class:`torch.Tensor`): Output tensor.
grad (:class:`torch.Tensor`): Gradient passed back to the output.
"""
ret = self.optimizer.backward_by_grad(tensor, grad)
for ophook in self._ophook_list:
ophook.post_iter()
return ret
def __call__(self, *args, **kwargs):
"""Run the forward step for the model.
Returns:
Tuple[:class:`torch.Tensor`] or :class:`torch.Tensor`: Output of the model.
"""
return self.model(*args, **kwargs)
def _all_reduce_gradients(self):
"""Handles all-reduce operations of gradients across different parallel groups."""
for handler in self._gradient_handlers:
handler.handle_gradient()
def execute_schedule(self, data_iter: Iterable, **kwargs):
"""Run the forward, loss computation, and backward for the model.
Returns a tuple of (output, label, loss).
Returns:
Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss).
"""
output, label, loss = self._schedule.forward_backward_step(self, data_iter, **kwargs)
return output, label, loss
def train(self):
"""Sets the model to training mode."""
self.training = True
self._model.train()
def eval(self):
"""Sets the model to evaluation mode."""
self.training = False
self._model.eval()