You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalMoE/train.py

291 lines
10 KiB

import argparse
import torch
import torch.distributed as dist
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers.models.mixtral import MixtralForCausalLM
from utils import load_checkpoint, move_to_cuda, save_checkpoint
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.cluster import DistCoordinator
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
@torch.no_grad()
def get_global_loss(loss, booster):
global_loss = loss.clone().detach()
dist.all_reduce(tensor=global_loss, op=dist.ReduceOp.SUM, group=booster.plugin.dp_group)
global_loss.div_(booster.plugin.dp_size)
return global_loss
class RandomDataset(Dataset):
def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 100, tokenizer=None):
self.num_samples = num_samples
self.max_length = max_length
self.input_ids = torch.randint(0, vocab_size, (num_samples, max_length), device=get_current_device())
self.attention_mask = torch.ones_like(self.input_ids)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}
def parse_args():
# basic settings
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="mistralai/Mixtral-8x7B-v0.1",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint")
parser.add_argument(
"--plugin",
type=str,
default="hybrid",
choices=["hybrid"],
help="Parallel methods.",
)
parser.add_argument(
"--output_path",
type=str,
default="./outputs",
help="The path of your saved model after finetuning.",
)
parser.add_argument("--num_epoch", type=int, default=1, help="Number of epochs.")
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per dp group) for the training dataloader.",
)
parser.add_argument(
"--save_interval",
type=int,
default=1000,
help=" The interval (steps) of saving checkpoints.",
)
parser.add_argument(
"--precision",
type=str,
default="bf16",
choices=["fp32", "bf16", "fp16"],
help="The mixed precision training.",
)
parser.add_argument("--max_length", type=int, default=2048, help="Max sequence length.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
# optim
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
# lr scheduler
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
# zero stage for all plugins
parser.add_argument("--zero_stage", type=int, default=2, help="zero stage.")
# hybrid plugin
parser.add_argument("--pp_size", type=int, default=2, help="pp size for hybrid plugin")
parser.add_argument("--dp_size", type=int, default=1, help="dp size for hybrid plugin")
parser.add_argument("--ep_size", type=int, default=2, help="ep size for hybrid plugin")
parser.add_argument("--microbatch_size", type=int, default=1, help="Microbatch size in pipeline for hybrid plugin")
# kernel
parser.add_argument(
"--use_kernel",
action="store_true",
help="Use kernel optim. Need to install flash attention and triton to enable all kernel optimizations. Skip if not installed.",
)
parser.add_argument(
"--use_layernorm_kernel",
action="store_true",
help="Use layernorm kernel. Need to install apex. Raise error if not installed.",
)
# load balance
parser.add_argument(
"--load_balance", action="store_true", help="Expert load balance. Defaults to False. Recommend to enable."
)
parser.add_argument("--load_balance_interval", type=int, default=1000, help="Expert load balance interval.")
# communicate overlap
parser.add_argument(
"--comm_overlap",
action="store_true",
help="Use communication overlap for MoE. Recommended to enable for multi-node training.",
)
# hierarchical all-to-all
parser.add_argument(
"--hierarchical_alltoall",
action="store_true",
help="Use hierarchical all-to-all for MoE. Recommended to enable for multi-node training.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
# Launch ColossalAI
colossalai.launch_from_torch(seed=args.seed)
coordinator = DistCoordinator()
# Set plugin
if args.plugin == "hybrid":
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=args.pp_size,
ep_size=args.ep_size,
microbatch_size=args.microbatch_size,
enable_fused_normalization=args.use_layernorm_kernel,
enable_jit_fused=args.use_kernel,
precision=args.precision,
zero_stage=args.zero_stage,
)
else:
raise ValueError(f"Invalid plugin {args.plugin}")
coordinator.print_on_master(f"Set plugin as {plugin.__class__.__name__}")
# Build Mixtral model
model = MixtralForCausalLM.from_pretrained(args.model_name)
coordinator.print_on_master(f"Finish init model")
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
dataset = RandomDataset(num_samples=100, tokenizer=tokenizer)
collate_fn = None
dataloader = plugin.prepare_dataloader(
dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
)
# Set optimizer
optimizer = HybridAdam(
model_params=model.parameters(),
lr=args.lr,
betas=(0.9, 0.95),
weight_decay=args.weight_decay,
adamw_mode=True,
)
# Set lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer,
total_steps=args.num_epochs * len(dataloader),
warmup_steps=(
args.warmup_steps if args.warmup_steps is not None else int(args.num_epochs * len(dataloader) * 0.025)
),
eta_min=0.1 * args.lr,
)
# Set booster
booster = Booster(plugin=plugin)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
use_pipeline = isinstance(booster.plugin, MoeHybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
coordinator.print_on_master(f"Finish init booster")
# Load ckpt
if args.load_checkpoint is not None:
load_checkpoint(args.load_checkpoint, booster, model, optimizer, lr_scheduler)
coordinator.print_on_master(f"Finish load optimizer")
# Start finetuning
coordinator.print_on_master(f"Start finetuning")
for epoch in range(args.num_epoch):
model.train()
train_dataloader_iter = iter(dataloader)
total_len = len(train_dataloader_iter)
with tqdm(
range(total_len),
desc=f"Epoch [{epoch + 1}/{args.num_epoch}]",
disable=not coordinator.is_master() if use_pipeline == False else not is_pp_last_stage,
) as pbar:
for step in pbar:
if use_pipeline:
# Forward pass
outputs = booster.execute_pipeline(
train_dataloader_iter,
model,
lambda x, y: x.loss,
optimizer,
return_loss=True,
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
global_loss = get_global_loss(loss, booster)
if coordinator._local_rank == "0":
pbar.set_postfix({"Loss": global_loss.item()})
else:
# Forward pass
data = next(train_dataloader_iter)
data = move_to_cuda(data, torch.cuda.current_device())
outputs = model(**data)
loss = outputs["loss"]
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Apply load balance
# if (
# args.load_balance
# and args.load_balance_interval > 0
# and (step + 1) % args.load_balance_interval == 0
# ):
# coordinator.print_on_master(f"Apply load balance")
# apply_load_balance(model, optimizer)
# save checkpoint
if (step + 1) % args.save_interval == 0:
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
save_checkpoint(
args.output_path,
booster,
model,
optimizer,
lr_scheduler,
epoch,
step,
args.batch_size,
coordinator,
)
# save checkpoint at the end of each epochs
booster.save_model(model, args.output_path, shard=True, size_per_shard=5120)
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
# Finish training
coordinator.print_on_master(f"Finish training")
if __name__ == "__main__":
main()