ColossalAI/colossalai/engine/ophooks/zero_hook.py

109 lines
4.7 KiB
Python

from typing import Optional
import torch
import torch.distributed as dist
from colossalai.registry import OPHOOKS
from colossalai.utils import get_current_device
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_param.tensorful_state import TensorState
from ._base_ophook import BaseOpHook
from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move_inline
@OPHOOKS.register_module
class ZeroHook(BaseOpHook):
"""
A hook to process sharded param for ZeRO method.
"""
def __init__(self,
shard_strategy: BaseShardStrategy,
memstarts_collector: Optional[MemStatsCollector],
process_group: Optional[dist.ProcessGroup] = None):
super().__init__()
self.shard_strategy = shard_strategy
self.process_group = process_group
# NOTE(jiaruifang) Now the computing device of FWD and BWD is always on GPU
self.computing_device = torch.device(f'cuda:{get_current_device()}')
self._memstarts_collector = memstarts_collector
def pre_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
def post_fwd_exec(self, module: torch.nn.Module, *args):
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_FWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device)
param.data = param.col_attr.sharded_data_tensor.payload
# Store local accumulated grad shard
if param.grad is not None:
if param.col_attr.bwd_count == 0:
# We haven't stored local accumulated grad yet
assert param.col_attr.fp32_grad.is_null()
# Allocate grad fp32 memory space here
param.col_attr.fp32_grad.reset_payload(param.grad.data)
# TODO(jiaruifang) we should set grad fp16 state to HOLD here.
param.grad = None
else:
# We have stored local accumulated grad
# The grad here must be locally computed full grad in this backward pass
assert param.grad.shape == param.col_attr.sharded_data_tensor.origin_shape
param.col_attr.bwd_count += 1
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
def post_bwd_exec(self, module: torch.nn.Module, input):
for param in module.parameters(recurse=False):
param.col_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_BWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'col_attr')
tensor_list.append(param.col_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
for param in module.parameters(recurse=False):
param.col_attr.remove_torch_payload()
def pre_iter(self):
pass
def post_iter(self):
pass