mirror of https://github.com/hpcaitech/ColossalAI
179 lines
5.6 KiB
Python
179 lines
5.6 KiB
Python
import torch
|
|
import collections
|
|
from itertools import repeat
|
|
from ..registry import meta_patched_function
|
|
import math
|
|
|
|
|
|
def _ntuple(n, name="parse"):
|
|
|
|
def parse(x):
|
|
if isinstance(x, collections.abc.Iterable):
|
|
return tuple(x)
|
|
return tuple(repeat(x, n))
|
|
|
|
parse.__name__ = name
|
|
return parse
|
|
|
|
|
|
_single = _ntuple(1, "_single")
|
|
_pair = _ntuple(2, "_pair")
|
|
_triple = _ntuple(3, "_triple")
|
|
|
|
|
|
def _extract_kwargs(kwargs):
|
|
if 'stride' in kwargs:
|
|
stride = kwargs['stride']
|
|
else:
|
|
stride = 1
|
|
# TODO: process str type padding
|
|
if 'padding' in kwargs:
|
|
padding = kwargs['padding']
|
|
else:
|
|
padding = 0
|
|
if 'dilation' in kwargs:
|
|
dilation = kwargs['dilation']
|
|
else:
|
|
dilation = 1
|
|
if 'output_padding' in kwargs:
|
|
output_padding = kwargs['output_padding']
|
|
else:
|
|
output_padding = 0
|
|
|
|
return stride, padding, dilation, output_padding
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv1d)
|
|
def torch_nn_functional_conv1d(input, weight, **kwargs):
|
|
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
|
|
|
stride = _single(stride)
|
|
padding = _single(padding)
|
|
dilation = _single(dilation)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
l_in = input.shape[-1]
|
|
c_out = weight.shape[0]
|
|
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
result_shape = input.shape[:-2] + (
|
|
c_out,
|
|
l_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv2d)
|
|
def torch_nn_functional_conv2d(input, weight, **kwargs):
|
|
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
|
|
|
stride = _pair(stride)
|
|
padding = _pair(padding)
|
|
dilation = _pair(dilation)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
h_in, w_in = input.shape[-2:]
|
|
c_out = weight.shape[0]
|
|
h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
|
result_shape = input.shape[:-3] + (
|
|
c_out,
|
|
h_out,
|
|
w_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv3d)
|
|
def torch_nn_functional_conv3d(input, weight, **kwargs):
|
|
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
|
|
|
stride = _triple(stride)
|
|
padding = _triple(padding)
|
|
dilation = _triple(dilation)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
d_in, h_in, w_in = input.shape[-3:]
|
|
c_out = weight.shape[0]
|
|
d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
|
w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1)
|
|
result_shape = input.shape[:-4] + (
|
|
c_out,
|
|
d_out,
|
|
h_out,
|
|
w_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv_transpose1d)
|
|
def torch_nn_functional_convtranspose1d(input, weight, **kwargs):
|
|
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
|
|
|
stride = _single(stride)
|
|
padding = _single(padding)
|
|
dilation = _single(dilation)
|
|
output_padding = _single(output_padding)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
l_in = input.shape[-1]
|
|
c_out = weight.shape[1]
|
|
l_out = math.floor((l_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
|
output_padding[0] + 1)
|
|
result_shape = input.shape[:-2] + (
|
|
c_out,
|
|
l_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv_transpose2d)
|
|
def torch_nn_functional_convtranspose2d(input, weight, **kwargs):
|
|
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
|
|
|
stride = _pair(stride)
|
|
padding = _pair(padding)
|
|
dilation = _pair(dilation)
|
|
output_padding = _pair(output_padding)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
h_in, w_in = input.shape[-2:]
|
|
c_out = weight.shape[1]
|
|
h_out = math.floor((h_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
|
output_padding[0] + 1)
|
|
w_out = math.floor((w_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) +
|
|
output_padding[1] + 1)
|
|
result_shape = input.shape[:-3] + (
|
|
c_out,
|
|
h_out,
|
|
w_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.conv_transpose3d)
|
|
def torch_nn_functional_convtranspose3d(input, weight, **kwargs):
|
|
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
|
|
|
stride = _triple(stride)
|
|
padding = _triple(padding)
|
|
dilation = _triple(dilation)
|
|
output_padding = _triple(output_padding)
|
|
|
|
kernel_size = weight.shape[2:]
|
|
d_in, h_in, w_in = input.shape[-3:]
|
|
c_out = weight.shape[1]
|
|
d_out = math.floor((d_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
|
output_padding[0] + 1)
|
|
h_out = math.floor((h_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) +
|
|
output_padding[1] + 1)
|
|
w_out = math.floor((w_in - 1) * stride[2] - 2 * padding[2] + dilation[2] * (kernel_size[2] - 1) +
|
|
output_padding[2] + 1)
|
|
result_shape = input.shape[:-4] + (
|
|
c_out,
|
|
d_out,
|
|
h_out,
|
|
w_out,
|
|
)
|
|
return torch.empty(result_shape, device='meta')
|