ColossalAI/applications/Colossal-LLaMA/colossal_llama/tokenizer/init_tokenizer.py

99 lines
3.3 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
Initialize new tokenizer for continual pre-training
"""
import argparse
import json
import os
from typing import List, Union
from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from colossalai.logging import get_dist_logger
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
logger = get_dist_logger()
def expand_vocab_tokenizer(
source_tokenizer_dir: Union[str, os.PathLike], target_tokenizer_dir: Union[str, os.PathLike], new_tokens: List[str]
) -> None:
"""Expand tokenizer for continue pre-training."""
if os.path.exists(target_tokenizer_dir):
raise RuntimeError(f"Find existed directory {target_tokenizer_dir}")
source_tokenizer = LlamaTokenizer.from_pretrained(source_tokenizer_dir)
logger.info(source_tokenizer)
source_sp_processor = source_tokenizer.sp_model
source_spm = sp_pb2_model.ModelProto()
source_spm.ParseFromString(source_sp_processor.serialized_model_proto())
logger.info(f"Source tokenizer size: {len(source_sp_processor)}")
# Add new tokens to source tokenizer.
source_spm_tokens = set([p.piece for p in source_spm.pieces])
for piece in new_tokens:
assert isinstance(piece, str), f"Invalid token({piece}) type {type(piece)}"
if piece in source_spm_tokens:
# Skip existed token.
continue
new_p = sp_pb2_model.ModelProto().SentencePiece()
new_p.piece = piece
new_p.score = 0
source_spm.pieces.append(new_p)
logger.info(f"Expand vocab from {len(source_spm_tokens)} to {len(source_spm.pieces)}")
# Save
os.makedirs(target_tokenizer_dir)
target_tokenizer_model_path = os.path.join(target_tokenizer_dir, "tokenizer.model")
with open(file=target_tokenizer_model_path, mode="wb") as fp:
fp.write(source_spm.SerializeToString())
target_tokenizer = LlamaTokenizer(vocab_file=target_tokenizer_model_path)
target_tokenizer.save_pretrained(save_directory=target_tokenizer_dir)
logger.info(f"Successfully save expand tokenizer to {target_tokenizer_dir}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--source_tokenizer_dir", type=str, required=True, default=None, help="Source tokenizer directory"
)
parser.add_argument(
"--target_tokenizer_dir", type=str, required=True, default=None, help="Target tokenizer directory"
)
parser.add_argument(
"--expand_tokens_file",
type=str,
required=True,
default=None,
help="Path of the file containing tokens to be extended",
)
args = parser.parse_args()
expand_tokens = []
with open(file=args.expand_tokens_file, mode="r", encoding="utf-8") as fp_reader:
for line in fp_reader:
item = json.loads(line)
# e.g., {"piece": "你好"}
token = item["piece"]
if token in expand_tokens:
continue
expand_tokens.append(token)
expand_tokens.sort(key=lambda t: len(t), reverse=False)
expand_vocab_tokenizer(
source_tokenizer_dir=args.source_tokenizer_dir,
target_tokenizer_dir=args.target_tokenizer_dir,
new_tokens=expand_tokens,
)
if __name__ == "__main__":
main()