mirror of https://github.com/hpcaitech/ColossalAI
180 lines
6.4 KiB
Python
180 lines
6.4 KiB
Python
import torch
|
|
from typing import List, Optional
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.context.singleton_meta import SingletonMeta
|
|
|
|
|
|
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
|
|
|
def __init__(self):
|
|
# distributed settings
|
|
self.dict = {}
|
|
|
|
def get(self, rank_list: List[int], backend: str = 'nccl'):
|
|
"""Reuse Pytorch ProcessGroup when such a group is initialized
|
|
"""
|
|
rank_tuple = tuple(rank_list)
|
|
# we need to convert the passed list to a tuple
|
|
# since List is unhashable
|
|
pg_key = (backend, rank_tuple)
|
|
|
|
if pg_key not in self.dict:
|
|
|
|
self.logger = get_dist_logger('ProcessGroup')
|
|
self.logger.info(f'NCCL initialize ProcessGroup on {rank_list}', ranks=[0])
|
|
|
|
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
|
return self.dict[pg_key]
|
|
|
|
|
|
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
|
|
|
|
|
class ProcessGroup:
|
|
"""
|
|
Process Group contains group partition for Tensor Parallel and Data Parallel.
|
|
NOTE, the ProcessGroup must be used after torch.distributed.initialize()
|
|
args:
|
|
rank: the global rank of the current process.
|
|
ranks: List[int], a list of rank id belongings to this process group.
|
|
backend: str, the backend of the process group.
|
|
tp_degree: Optional[int], tensor parallelism degree, default None means 1
|
|
dp_degree: Optional[int], data parallelism degree, default None means len(ranks)
|
|
"""
|
|
|
|
def __init__(self,
|
|
rank: Optional[int] = None,
|
|
ranks: Optional[List[int]] = None,
|
|
tp_degree: Optional[int] = None,
|
|
dp_degree: Optional[int] = None) -> None:
|
|
if not torch.distributed.is_initialized():
|
|
self.is_init = False
|
|
return
|
|
|
|
assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized"
|
|
if rank is None:
|
|
self._rank = torch.distributed.get_rank()
|
|
else:
|
|
self._rank = rank
|
|
|
|
if ranks is None:
|
|
self._rank_list = list(range(torch.distributed.get_world_size()))
|
|
else:
|
|
self._rank_list = ranks
|
|
self._rank_list.sort() # ensure that the list is in order
|
|
|
|
self._world_size = len(self._rank_list)
|
|
|
|
if dp_degree is None and tp_degree is None:
|
|
self._dp_degree = self._world_size
|
|
self._tp_degree = 1
|
|
elif dp_degree and not tp_degree:
|
|
self._dp_degree = dp_degree
|
|
assert self._world_size % self._dp_degree == 0, f"DP degree {dp_degree} should be divisible by {self._world_size} hen DP degree is None"
|
|
self._tp_degree = self._world_size // dp_degree
|
|
elif not dp_degree and tp_degree:
|
|
self._tp_degree = tp_degree
|
|
assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None"
|
|
self._dp_degree = self._world_size // tp_degree
|
|
else:
|
|
self._dp_degree = dp_degree
|
|
self._tp_degree = tp_degree
|
|
assert self._dp_degree * self._tp_degree == self._world_size, \
|
|
f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \
|
|
f"and TP degree {self._tp_degree}"
|
|
|
|
self._tp_rank_list = None
|
|
self._dp_rank_list = None
|
|
|
|
for i in range(self._dp_degree):
|
|
i_tp_list = [self._rank_list[i * self._tp_degree + j] for j in range(self._tp_degree)]
|
|
PYTORCHPGDICT_.get(i_tp_list, 'nccl')
|
|
if self._rank in i_tp_list:
|
|
self._tp_rank_list = i_tp_list
|
|
|
|
for j in range(self._tp_degree):
|
|
j_dp_list = [self._rank_list[i * self._tp_degree + j] for i in range(self._dp_degree)]
|
|
PYTORCHPGDICT_.get(j_dp_list, 'nccl')
|
|
if self._rank in j_dp_list:
|
|
self._dp_rank_list = j_dp_list
|
|
|
|
self._has_cpu_groups = False
|
|
self.is_init = True
|
|
|
|
def set_cpu_groups(self):
|
|
if self.has_cpu_groups:
|
|
return
|
|
self.logger.info(
|
|
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
|
PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
|
PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
|
self._has_cpu_groups = True
|
|
|
|
@property
|
|
def has_cpu_groups(self):
|
|
return self._has_cpu_groups
|
|
|
|
def __repr__(self):
|
|
if self.is_init:
|
|
return "ProcessGroup:\n\tRank: {}, World size: {}, DP degree: {}, TP degree: {}\n\tRanks in group: {}".\
|
|
format(self._rank, self._world_size, self._dp_degree, self._tp_degree, self._rank_list)
|
|
else:
|
|
return "ProcessGroup not initialized"
|
|
|
|
def __eq__(self, obj: 'ProcessGroup') -> bool:
|
|
if not isinstance(obj, ProcessGroup):
|
|
return False
|
|
if self._rank != obj._rank:
|
|
return False
|
|
if self._rank_list != obj._rank_list:
|
|
return False
|
|
if self._tp_rank_list != obj._tp_rank_list:
|
|
return False
|
|
if self._dp_rank_list != obj._dp_rank_list:
|
|
return False
|
|
if self._tp_degree != obj._tp_degree:
|
|
return False
|
|
if self._dp_degree != obj._dp_degree:
|
|
return False
|
|
return True
|
|
|
|
def rank(self):
|
|
return self._rank
|
|
|
|
def world_size(self):
|
|
return self._world_size
|
|
|
|
def tp_local_rank(self):
|
|
return self._rank % self._tp_degree
|
|
|
|
def dp_local_rank(self):
|
|
return self._rank // self._tp_degree
|
|
|
|
def dp_world_size(self):
|
|
return len(self._dp_rank_list)
|
|
|
|
def tp_world_size(self):
|
|
return len(self._tp_rank_list)
|
|
|
|
def dp_process_group(self):
|
|
# return self._dp_process_group
|
|
return PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl')
|
|
|
|
def tp_process_group(self):
|
|
# return self._tp_process_group
|
|
return PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
|
|
|
|
def cpu_dp_process_group(self):
|
|
assert self._has_cpu_groups
|
|
return PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
|
|
|
def cpu_tp_process_group(self):
|
|
assert self._has_cpu_groups
|
|
return PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
|
|
|
def get_ranks_in_dp(self):
|
|
return self._dp_rank_list
|
|
|
|
def get_ranks_in_tp(self):
|
|
return self._tp_rank_list
|