You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/coati/ray/callbacks/performance_evaluator.py

215 lines
8.4 KiB

from time import time
from typing import Optional
import torch
import torch.distributed as dist
from coati.experience_maker import Experience
from .base import MakerCallback, TrainerCallback
def get_world_size() -> int:
if dist.is_initialized():
return dist.get_world_size()
return 1
def print_rank_0(*args, **kwargs) -> None:
if not dist.is_initialized() or dist.get_rank() == 0:
print(*args, **kwargs)
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=torch.cuda.current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
def start(self) -> None:
self.start_time = time()
def end(self) -> None:
self.duration += time() - self.start_time
def reset(self) -> None:
self.duration = 0.0
class ExperienceMakerPerformanceEvaluator(MakerCallback):
def __init__(
self, actor_num_params: int, critic_num_params: int, initial_model_num_params: int, reward_model_num_params: int
) -> None:
super().__init__()
self.world_size = get_world_size()
self.actor_num_params = actor_num_params
self.critic_num_params = critic_num_params
self.initial_model_num_params = initial_model_num_params
self.reward_model_num_params = reward_model_num_params
self.batch_timer = Timer()
self.send_timer = Timer()
self.make_experience_timer = Timer()
self.total_samples: int = 0
self.make_experience_flop: int = 0
print_rank_0(
f"ExperienceMaker actor: {actor_num_params/1024**3:.2f}B, critic: {critic_num_params/1024**3:.2f}B, initial model: {initial_model_num_params/1024**3:.2f}B, reward model: {reward_model_num_params/1024**3:.2f}B, world size: {self.world_size}"
)
def on_make_experience_start(self) -> None:
self.make_experience_timer.start()
def on_make_experience_end(self, experience: Experience) -> None:
self.make_experience_timer.end()
batch_size, seq_len = experience.sequences.shape
self.total_samples += batch_size
# actor generate
num_actions = experience.action_mask.size(1)
input_len = seq_len - num_actions
total_seq_len = (input_len + seq_len - 1) * num_actions / 2
self.make_experience_flop += self.actor_num_params * batch_size * total_seq_len * 2
# actor forward
self.make_experience_flop += self.actor_num_params * batch_size * seq_len * 2
# critic forward
self.make_experience_flop += self.critic_num_params * batch_size * seq_len * 2
# initial model forward
self.make_experience_flop += self.initial_model_num_params * batch_size * seq_len * 2
# reward model forward
self.make_experience_flop += self.reward_model_num_params * batch_size * seq_len * 2
def on_send_start(self) -> None:
self.send_timer.start()
def on_send_end(self) -> None:
self.send_timer.end()
def on_batch_start(self) -> None:
self.batch_timer.start()
def on_batch_end(self) -> None:
self.batch_timer.end()
def on_loop_end(self) -> None:
avg_make_experience_duration = all_reduce_mean(self.make_experience_timer.duration, self.world_size)
avg_overall_duration = all_reduce_mean(self.batch_timer.duration, self.world_size)
avg_send_duration = all_reduce_mean(self.send_timer.duration, self.world_size)
avg_throughput = self.total_samples * self.world_size / (avg_overall_duration + 1e-12)
avg_make_experience_tflops = self.make_experience_flop / 1e12 / (avg_make_experience_duration + 1e-12)
avg_time_per_sample = (avg_overall_duration + 1e-12) / (self.total_samples * self.world_size)
avg_make_experience_time_per_sample = (avg_make_experience_duration + 1e-12) / (
self.total_samples * self.world_size
)
avg_send_time_per_sample = (avg_send_duration + 1e-12) / (self.total_samples * self.world_size)
print_rank_0(
"Making Experience Performance Summary:\n"
+ f"Throughput: {avg_throughput:.3f} samples/sec\n"
+ f"TFLOPS per GPU: {avg_make_experience_tflops:.3f}\n"
+ f"Sample time (overall): {avg_time_per_sample:.3f} s\n"
+ f"Sample time (make experience): {avg_make_experience_time_per_sample:.3f} s, {avg_make_experience_time_per_sample/avg_time_per_sample*100:.2f}%\n"
+ f"Sample time (send): {avg_send_time_per_sample:.3f} s, {avg_send_time_per_sample/avg_time_per_sample*100:.2f}%\n"
)
class TrainerPerformanceEvaluator(TrainerCallback):
def __init__(
self,
actor_num_params: int,
critic_num_params: int,
enable_grad_checkpoint: bool = False,
ignore_first_episodes: int = 1,
) -> None:
super().__init__()
self.world_size = get_world_size()
self.actor_num_params = actor_num_params
self.critic_num_params = critic_num_params
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_first_episodes = ignore_first_episodes
self.ignore_this_episode = False
self.episode_timer = Timer()
self.batch_timer = Timer()
self.update_timer = Timer()
self.total_samples: int = 0
self.learn_flop: int = 0
print_rank_0(
f"Trainer actor: {self.actor_num_params/1024**3:.2f}B, critic: {self.critic_num_params/1024**3:.2f}B, world size: {self.world_size}"
)
def on_episode_start(self, episodes: int) -> None:
self.ignore_this_episode = episodes < self.ignore_first_episodes
if self.ignore_this_episode:
return
self.episode_timer.start()
def on_episode_end(self, episodes: int) -> None:
if self.ignore_this_episode:
return
self.episode_timer.end()
def on_batch_start(self) -> None:
if self.ignore_this_episode:
return
self.batch_timer.start()
def on_batch_end(self, metrics: dict, experience: Experience) -> None:
if self.ignore_this_episode:
return
self.batch_timer.end()
batch_size, seq_len = experience.sequences.shape
self.total_samples += batch_size
# actor forward-backward, 3 means forward(1) + backward(2)
self.learn_flop += self.actor_num_params * batch_size * seq_len * 2 * (3 + int(self.enable_grad_checkpoint))
# critic forward-backward
self.learn_flop += self.critic_num_params * batch_size * seq_len * 2 * (3 + int(self.enable_grad_checkpoint))
def on_update_start(self) -> None:
if self.ignore_this_episode:
return
self.update_timer.start()
def on_update_end(self) -> None:
if self.ignore_this_episode:
return
self.update_timer.end()
def on_fit_end(self) -> None:
if self.total_samples == 0:
print_rank_0("No samples are collected, skip trainer performance evaluation")
return
avg_train_duration = all_reduce_mean(self.batch_timer.duration, self.world_size)
avg_update_duration = all_reduce_mean(self.update_timer.duration, self.world_size)
avg_episode_duration = all_reduce_mean(self.episode_timer.duration, self.world_size)
avg_throughput = self.total_samples * self.world_size / (avg_episode_duration + 1e-12)
avg_learn_tflops = self.learn_flop / 1e12 / (avg_train_duration + 1e-12)
avg_time_per_sample = (avg_episode_duration + 1e-12) / (self.total_samples * self.world_size)
avg_train_time_per_sample = (avg_train_duration + 1e-12) / (self.total_samples * self.world_size)
avg_update_time_per_sample = (avg_update_duration + 1e-12) / (self.total_samples * self.world_size)
print_rank_0(
"Learning Performance Summary:\n"
+ f"Throughput: {avg_throughput:.3f} samples/sec\n"
+ f"TFLOPS per GPU: {avg_learn_tflops:.3f}\n"
+ f"Sample time (overall): {avg_time_per_sample:.3f} s\n"
+ f"Sample time (train): {avg_train_time_per_sample:.3f} s, {avg_train_time_per_sample/avg_time_per_sample*100:.2f}%\n"
+ f"Sample time (update): {avg_update_time_per_sample:.3f} s, {avg_update_time_per_sample/avg_time_per_sample*100:.2f}%\n"
)